Multiplicative inverses of negative real numbers
Content created by Louis Wasserman.
Created on 2025-10-15.
Last modified on 2025-10-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.multiplicative-inverses-negative-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.multiplicative-inverses-positive-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.negative-real-numbers open import real-numbers.positive-and-negative-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
If a real number x
is
negative, then it has a
multiplicative inverse¶,
a unique, negative real number y
such that the
product of x
and y
is 1.
Definition
inv-ℝ⁻ : {l : Level} → ℝ⁻ l → ℝ⁻ l inv-ℝ⁻ x = neg-ℝ⁺ (inv-ℝ⁺ (neg-ℝ⁻ x)) real-inv-ℝ⁻ : {l : Level} → ℝ⁻ l → ℝ l real-inv-ℝ⁻ x = real-ℝ⁻ (inv-ℝ⁻ x)
Properties
The multiplicative inverse is a multiplicative inverse
abstract left-inverse-law-mul-ℝ⁻ : {l : Level} (x : ℝ⁻ l) → sim-ℝ (real-inv-ℝ⁻ x *ℝ real-ℝ⁻ x) one-ℝ left-inverse-law-mul-ℝ⁻ x⁻@(x , _) = inv-tr ( λ y → sim-ℝ y one-ℝ) ( left-negative-law-mul-ℝ _ _ ∙ inv (right-negative-law-mul-ℝ _ _)) ( left-inverse-law-mul-ℝ⁺ (neg-ℝ⁻ x⁻)) right-inverse-law-mul-ℝ⁻ : {l : Level} (x : ℝ⁻ l) → sim-ℝ (real-ℝ⁻ x *ℝ real-inv-ℝ⁻ x) one-ℝ right-inverse-law-mul-ℝ⁻ x = tr ( λ y → sim-ℝ y one-ℝ) ( commutative-mul-ℝ _ _) ( left-inverse-law-mul-ℝ⁻ x)
Recent changes
- 2025-10-15. Louis Wasserman. Multiplicative inverses of nonzero real numbers (#1571).