Surjective semigroup homomorphisms
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module group-theory.surjective-semigroup-homomorphisms where
Imports
open import foundation.propositions open import foundation.surjective-maps open import foundation.universe-levels open import group-theory.full-subsemigroups open import group-theory.homomorphisms-semigroups open import group-theory.images-of-semigroup-homomorphisms open import group-theory.semigroups
A semigroup homomorphism f : G → H
is said to be surjective if its underlying map is
surjective.
Definition
Surjective semigroup homomorphisms
module _ {l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) where is-surjective-prop-hom-Semigroup : Prop (l1 ⊔ l2) is-surjective-prop-hom-Semigroup = is-surjective-Prop (map-hom-Semigroup G H f) is-surjective-hom-Semigroup : UU (l1 ⊔ l2) is-surjective-hom-Semigroup = type-Prop is-surjective-prop-hom-Semigroup is-prop-is-surjective-hom-Semigroup : is-prop is-surjective-hom-Semigroup is-prop-is-surjective-hom-Semigroup = is-prop-type-Prop is-surjective-prop-hom-Semigroup
Properties
A semigroup homomorphism is surjective if and only if its image is the full subsemigroup
module _ {l1 l2 : Level} (G : Semigroup l1) (H : Semigroup l2) (f : hom-Semigroup G H) where is-surjective-is-full-subsemigroup-image-hom-Semigroup : is-full-Subsemigroup H (image-hom-Semigroup G H f) → is-surjective-hom-Semigroup G H f is-surjective-is-full-subsemigroup-image-hom-Semigroup u = u is-full-subsemigroup-image-is-surjective-hom-Semigroup : is-surjective-hom-Semigroup G H f → is-full-Subsemigroup H (image-hom-Semigroup G H f) is-full-subsemigroup-image-is-surjective-hom-Semigroup u = u
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).