Cospans of synthetic categories
Content created by Ivan Kobe.
Created on 2024-09-25.
Last modified on 2024-09-25.
{-# OPTIONS --guardedness #-} module synthetic-category-theory.cospans-synthetic-categories where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import structured-types.globular-types open import synthetic-category-theory.equivalences-synthetic-categories open import synthetic-category-theory.synthetic-categories
Idea
A cospan¶ of synthetic categories is a pair of functors f, g of synthetic categories with a common codomain:
C --f--> E <--g-- D.
Definition
module _ {l : Level} where cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (C E D : category-Synthetic-Category-Theory κ) → UU l cospan-Synthetic-Category-Theory κ C E D = Σ ( functor-Synthetic-Category-Theory κ C E) ( λ f → functor-Synthetic-Category-Theory κ D E)
The components of a cospan of synthetic categories
left-source-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C E D : category-Synthetic-Category-Theory κ} → cospan-Synthetic-Category-Theory κ C E D → category-Synthetic-Category-Theory κ left-source-cospan-Synthetic-Category-Theory κ {C = C} S = C right-source-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C E D : category-Synthetic-Category-Theory κ} → cospan-Synthetic-Category-Theory κ C E D → category-Synthetic-Category-Theory κ right-source-cospan-Synthetic-Category-Theory κ {D = D} S = D target-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C E D : category-Synthetic-Category-Theory κ} → cospan-Synthetic-Category-Theory κ C E D → category-Synthetic-Category-Theory κ target-cospan-Synthetic-Category-Theory κ {E = E} S = E left-functor-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C E D : category-Synthetic-Category-Theory κ} (S : cospan-Synthetic-Category-Theory κ C E D) → functor-Synthetic-Category-Theory κ ( left-source-cospan-Synthetic-Category-Theory κ S) ( target-cospan-Synthetic-Category-Theory κ S) left-functor-cospan-Synthetic-Category-Theory κ = pr1 right-functor-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C E D : category-Synthetic-Category-Theory κ} (S : cospan-Synthetic-Category-Theory κ C E D) → functor-Synthetic-Category-Theory κ ( right-source-cospan-Synthetic-Category-Theory κ S) ( target-cospan-Synthetic-Category-Theory κ S) right-functor-cospan-Synthetic-Category-Theory κ = pr2
Transformations of cospans of synthetic categories
A transformation between cospans C –f–> E <–g– D and C’–f’–> E’ <–g’– D’ is commutative diagram of the form:
C --f---> E <---g-- D
| | |
φ τ⇙ χ σ⇙ ψ
| | |
v v v
C'--f'--> E' <--g'--D'.
module _ {l : Level} where transformation-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} (S : cospan-Synthetic-Category-Theory κ C E D) (S' : cospan-Synthetic-Category-Theory κ C' E' D') → UU l transformation-cospan-Synthetic-Category-Theory κ μ S S' = Σ ( functor-Synthetic-Category-Theory κ ( left-source-cospan-Synthetic-Category-Theory κ S) ( left-source-cospan-Synthetic-Category-Theory κ S')) ( λ φ → Σ ( functor-Synthetic-Category-Theory κ ( target-cospan-Synthetic-Category-Theory κ S) ( target-cospan-Synthetic-Category-Theory κ S')) ( λ χ → Σ ( functor-Synthetic-Category-Theory κ ( right-source-cospan-Synthetic-Category-Theory κ S) ( right-source-cospan-Synthetic-Category-Theory κ S')) ( λ ψ → Σ ( commuting-square-functors-Synthetic-Category-Theory κ μ ( left-functor-cospan-Synthetic-Category-Theory κ S) ( χ) ( φ) ( left-functor-cospan-Synthetic-Category-Theory κ S')) ( λ τ → commuting-square-functors-Synthetic-Category-Theory κ μ ( right-functor-cospan-Synthetic-Category-Theory κ S) ( χ) ( ψ) ( right-functor-cospan-Synthetic-Category-Theory κ S')))))
The components of a transformation of cospans of synthetic categories
module _ {l : Level} where left-functor-transformation-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → transformation-cospan-Synthetic-Category-Theory κ μ S S' → functor-Synthetic-Category-Theory κ ( left-source-cospan-Synthetic-Category-Theory κ S) ( left-source-cospan-Synthetic-Category-Theory κ S') left-functor-transformation-cospan-Synthetic-Category-Theory κ μ H = pr1 H right-functor-transformation-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → transformation-cospan-Synthetic-Category-Theory κ μ S S' → functor-Synthetic-Category-Theory κ ( right-source-cospan-Synthetic-Category-Theory κ S) ( right-source-cospan-Synthetic-Category-Theory κ S') right-functor-transformation-cospan-Synthetic-Category-Theory κ μ H = pr1 (pr2 (pr2 H)) middle-functor-transformation-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → transformation-cospan-Synthetic-Category-Theory κ μ S S' → functor-Synthetic-Category-Theory κ ( target-cospan-Synthetic-Category-Theory κ S) ( target-cospan-Synthetic-Category-Theory κ S') middle-functor-transformation-cospan-Synthetic-Category-Theory κ μ H = pr1 (pr2 H) left-commuting-square-transformation-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} (H : transformation-cospan-Synthetic-Category-Theory κ μ S S') → commuting-square-functors-Synthetic-Category-Theory κ μ ( left-functor-cospan-Synthetic-Category-Theory κ S) ( middle-functor-transformation-cospan-Synthetic-Category-Theory κ μ H) ( left-functor-transformation-cospan-Synthetic-Category-Theory κ μ H) ( left-functor-cospan-Synthetic-Category-Theory κ S') left-commuting-square-transformation-cospan-Synthetic-Category-Theory κ μ H = pr1 (pr2 (pr2 (pr2 H))) right-commuting-square-transformation-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} (H : transformation-cospan-Synthetic-Category-Theory κ μ S S') → commuting-square-functors-Synthetic-Category-Theory κ μ ( right-functor-cospan-Synthetic-Category-Theory κ S) ( middle-functor-transformation-cospan-Synthetic-Category-Theory κ μ H) ( right-functor-transformation-cospan-Synthetic-Category-Theory κ μ H) ( right-functor-cospan-Synthetic-Category-Theory κ S') right-commuting-square-transformation-cospan-Synthetic-Category-Theory κ μ H = pr2 (pr2 (pr2 (pr2 H)))
Equivalences of cospans
An equivalence of cospans S and S’ is a transformations between S and S’ such that all three vertical functors are equivalences.
module _ {l : Level} where equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} (S : cospan-Synthetic-Category-Theory κ C E D) (S' : cospan-Synthetic-Category-Theory κ C' E' D') → UU l equiv-cospan-Synthetic-Category-Theory κ μ ι S S' = Σ ( equiv-Synthetic-Category-Theory κ μ ι ( left-source-cospan-Synthetic-Category-Theory κ S) ( left-source-cospan-Synthetic-Category-Theory κ S')) ( λ φ → Σ ( equiv-Synthetic-Category-Theory κ μ ι ( target-cospan-Synthetic-Category-Theory κ S) ( target-cospan-Synthetic-Category-Theory κ S')) ( λ χ → Σ ( equiv-Synthetic-Category-Theory κ μ ι ( right-source-cospan-Synthetic-Category-Theory κ S) ( right-source-cospan-Synthetic-Category-Theory κ S')) ( λ ψ → Σ ( commuting-square-functors-Synthetic-Category-Theory κ μ ( left-functor-cospan-Synthetic-Category-Theory κ S) ( functor-equiv-Synthetic-Category-Theory κ μ ι χ) ( functor-equiv-Synthetic-Category-Theory κ μ ι φ) ( left-functor-cospan-Synthetic-Category-Theory κ S')) ( λ τ → commuting-square-functors-Synthetic-Category-Theory κ μ ( right-functor-cospan-Synthetic-Category-Theory κ S) ( functor-equiv-Synthetic-Category-Theory κ μ ι χ) ( functor-equiv-Synthetic-Category-Theory κ μ ι ψ) ( right-functor-cospan-Synthetic-Category-Theory κ S')))))
The components of an equivalence of cospans of synthetic categories
module _ {l : Level} where left-equiv-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → equiv-cospan-Synthetic-Category-Theory κ μ ι S S' → equiv-Synthetic-Category-Theory κ μ ι ( left-source-cospan-Synthetic-Category-Theory κ S) ( left-source-cospan-Synthetic-Category-Theory κ S') left-equiv-equiv-cospan-Synthetic-Category-Theory κ μ ι H = pr1 H left-functor-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → equiv-cospan-Synthetic-Category-Theory κ μ ι S S' → functor-Synthetic-Category-Theory κ ( left-source-cospan-Synthetic-Category-Theory κ S) ( left-source-cospan-Synthetic-Category-Theory κ S') left-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H = functor-equiv-Synthetic-Category-Theory κ μ ι ( left-equiv-equiv-cospan-Synthetic-Category-Theory κ μ ι H) middle-equiv-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → equiv-cospan-Synthetic-Category-Theory κ μ ι S S' → equiv-Synthetic-Category-Theory κ μ ι ( target-cospan-Synthetic-Category-Theory κ S) ( target-cospan-Synthetic-Category-Theory κ S') middle-equiv-equiv-cospan-Synthetic-Category-Theory κ μ ι H = pr1 (pr2 H) middle-functor-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → equiv-cospan-Synthetic-Category-Theory κ μ ι S S' → functor-Synthetic-Category-Theory κ ( target-cospan-Synthetic-Category-Theory κ S) ( target-cospan-Synthetic-Category-Theory κ S') middle-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H = functor-equiv-Synthetic-Category-Theory κ μ ι ( middle-equiv-equiv-cospan-Synthetic-Category-Theory κ μ ι H) right-equiv-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → equiv-cospan-Synthetic-Category-Theory κ μ ι S S' → equiv-Synthetic-Category-Theory κ μ ι ( right-source-cospan-Synthetic-Category-Theory κ S) ( right-source-cospan-Synthetic-Category-Theory κ S') right-equiv-equiv-cospan-Synthetic-Category-Theory κ μ ι H = pr1 (pr2 (pr2 H)) right-functor-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → equiv-cospan-Synthetic-Category-Theory κ μ ι S S' → functor-Synthetic-Category-Theory κ ( right-source-cospan-Synthetic-Category-Theory κ S) ( right-source-cospan-Synthetic-Category-Theory κ S') right-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H = functor-equiv-Synthetic-Category-Theory κ μ ι ( right-equiv-equiv-cospan-Synthetic-Category-Theory κ μ ι H) left-commuting-square-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} (H : equiv-cospan-Synthetic-Category-Theory κ μ ι S S') → ( commuting-square-functors-Synthetic-Category-Theory κ μ ( left-functor-cospan-Synthetic-Category-Theory κ S) ( middle-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H) ( left-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H) ( left-functor-cospan-Synthetic-Category-Theory κ S')) left-commuting-square-equiv-cospan-Synthetic-Category-Theory κ μ ι H = pr1 (pr2 (pr2 (pr2 H))) right-commuting-square-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} (H : equiv-cospan-Synthetic-Category-Theory κ μ ι S S') → ( commuting-square-functors-Synthetic-Category-Theory κ μ ( right-functor-cospan-Synthetic-Category-Theory κ S) ( middle-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H) ( right-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H) ( right-functor-cospan-Synthetic-Category-Theory κ S')) right-commuting-square-equiv-cospan-Synthetic-Category-Theory κ μ ι H = pr2 (pr2 (pr2 (pr2 H))) transformation-cospan-equiv-cospan-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C C' E E' D D' : category-Synthetic-Category-Theory κ} {S : cospan-Synthetic-Category-Theory κ C E D} {S' : cospan-Synthetic-Category-Theory κ C' E' D'} → equiv-cospan-Synthetic-Category-Theory κ μ ι S S' → transformation-cospan-Synthetic-Category-Theory κ μ S S' pr1 ( transformation-cospan-equiv-cospan-Synthetic-Category-Theory κ μ ι H) = left-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H pr1 (pr2 ( transformation-cospan-equiv-cospan-Synthetic-Category-Theory κ μ ι H)) = middle-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H pr1 (pr2 (pr2 (transformation-cospan-equiv-cospan-Synthetic-Category-Theory κ μ ι H))) = right-functor-equiv-cospan-Synthetic-Category-Theory κ μ ι H pr1 (pr2 (pr2 (pr2 ( transformation-cospan-equiv-cospan-Synthetic-Category-Theory κ μ ι H)))) = left-commuting-square-equiv-cospan-Synthetic-Category-Theory κ μ ι H pr2 (pr2 (pr2 (pr2 ( transformation-cospan-equiv-cospan-Synthetic-Category-Theory κ μ ι H)))) = right-commuting-square-equiv-cospan-Synthetic-Category-Theory κ μ ι H
Recent changes
- 2024-09-25. Ivan Kobe. Pullbacks of synthetic categories (#1183).