Dependent products of left modules over commutative rings
Content created by Louis Wasserman.
Created on 2025-09-09.
Last modified on 2025-09-09.
module linear-algebra.dependent-products-left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.function-extensionality open import foundation.universe-levels open import linear-algebra.dependent-products-left-modules-rings open import linear-algebra.left-modules-commutative-rings
Idea
Given a commutative ring R
and a
family of left modules Mᵢ
over R
indexed by i : I
, the dependent product Π (i : I) Mᵢ
is a left
module over R
.
Definition
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (I : UU l2) (M : I → left-module-Commutative-Ring l3 R) where Π-left-module-Commutative-Ring : left-module-Commutative-Ring (l2 ⊔ l3) R Π-left-module-Commutative-Ring = Π-left-module-Ring (ring-Commutative-Ring R) I M
Recent changes
- 2025-09-09. Louis Wasserman. Left modules over commutative rings (#1539).