The metric abelian group of real numbers
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
{-# OPTIONS --lossy-unification #-} module real-numbers.metric-additive-group-of-real-numbers where
Imports
open import analysis.complete-metric-abelian-groups open import analysis.metric-abelian-groups open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.pseudometric-spaces open import real-numbers.cauchy-completeness-dedekind-real-numbers open import real-numbers.isometry-addition-real-numbers open import real-numbers.isometry-negation-real-numbers open import real-numbers.large-additive-group-of-real-numbers open import real-numbers.metric-space-of-real-numbers
Idea
The Dedekind real numbers form a metric abelian group under addition with regards to their standard metric space.
Definition
metric-ab-add-ℝ : (l : Level) → Metric-Ab (lsuc l) l metric-ab-add-ℝ l = ( ab-add-ℝ l , structure-Pseudometric-Space (pseudometric-space-ℝ l) , is-extensional-pseudometric-space-ℝ , is-isometry-neg-ℝ , is-isometry-left-add-ℝ) complete-metric-ab-add-ℝ : (l : Level) → Complete-Metric-Ab (lsuc l) l complete-metric-ab-add-ℝ l = ( metric-ab-add-ℝ l , is-complete-metric-space-ℝ l)
Recent changes
- 2025-12-03. Louis Wasserman. Series in Banach spaces (#1710).