Dependent products of complete metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-07.
Last modified on 2026-01-07.
module metric-spaces.dependent-products-complete-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.universe-levels open import metric-spaces.action-on-cauchy-approximations-short-maps-metric-spaces open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces
Idea
The dependent product of complete metric spaces is complete.
Proof
A product of complete metric spaces is complete
module _ {l l1 l2 : Level} (A : UU l) (P : A → Metric-Space l1 l2) (Π-complete : (x : A) → is-complete-Metric-Space (P x)) where limit-cauchy-approximation-Π-is-complete-Metric-Space : cauchy-approximation-Metric-Space (Π-Metric-Space A P) → type-Π-Metric-Space A P limit-cauchy-approximation-Π-is-complete-Metric-Space u x = limit-cauchy-approximation-Complete-Metric-Space ( P x , Π-complete x) ( ev-cauchy-approximation-Π-Metric-Space A P u x) is-limit-limit-cauchy-approximation-Π-is-complete-Metric-Space : (u : cauchy-approximation-Metric-Space (Π-Metric-Space A P)) → is-limit-cauchy-approximation-Metric-Space ( Π-Metric-Space A P) ( u) ( limit-cauchy-approximation-Π-is-complete-Metric-Space u) is-limit-limit-cauchy-approximation-Π-is-complete-Metric-Space u ε δ x = is-limit-limit-cauchy-approximation-Complete-Metric-Space ( P x , Π-complete x) ( ev-cauchy-approximation-Π-Metric-Space A P u x) ( ε) ( δ) is-complete-Π-Metric-Space : is-complete-Metric-Space (Π-Metric-Space A P) is-complete-Π-Metric-Space u = ( limit-cauchy-approximation-Π-is-complete-Metric-Space u , is-limit-limit-cauchy-approximation-Π-is-complete-Metric-Space u)
The complete product of complete metric spaces
module _ {l l1 l2 : Level} (A : UU l) (C : A → Complete-Metric-Space l1 l2) where Π-Complete-Metric-Space : Complete-Metric-Space (l ⊔ l1) (l ⊔ l2) pr1 Π-Complete-Metric-Space = Π-Metric-Space A (metric-space-Complete-Metric-Space ∘ C) pr2 Π-Complete-Metric-Space = is-complete-Π-Metric-Space ( A) ( metric-space-Complete-Metric-Space ∘ C) ( is-complete-metric-space-Complete-Metric-Space ∘ C)
Recent changes
- 2026-01-07. Louis Wasserman and Fredrik Bakke. Refactor Cauchy sequences (#1768).