The maximum of finite families of nonnegative real numbers
Content created by Louis Wasserman.
Created on 2026-02-15.
Last modified on 2026-02-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.maximum-finite-families-nonnegative-real-numbers where
Imports
open import elementary-number-theory.natural-numbers open import foundation.universe-levels open import lists.finite-sequences open import order-theory.join-semilattices open import order-theory.joins-finite-families-large-join-semilattices open import order-theory.least-upper-bounds-large-posets open import real-numbers.binary-maximum-nonnegative-real-numbers open import real-numbers.inequality-nonnegative-real-numbers open import real-numbers.nonnegative-real-numbers open import univalent-combinatorics.finite-types
Idea
The maximum¶ of a family of nonnegative real numbers indexed by a finite type is their least upper bound.
Definition
The maximum of a finite sequence of nonnegative real numbers
module _ {l : Level} (n : ℕ) (u : fin-sequence (ℝ⁰⁺ l) n) where max-fin-sequence-ℝ⁰⁺ : ℝ⁰⁺ l max-fin-sequence-ℝ⁰⁺ = join-fin-sequence-type-Large-Join-Semilattice large-join-semilattice-ℝ⁰⁺ n u
The maximum of an finite family of nonnegative real numbers
module _ {l1 l2 : Level} (I : Finite-Type l1) (f : type-Finite-Type I → ℝ⁰⁺ l2) where max-finite-family-ℝ⁰⁺ : ℝ⁰⁺ l2 max-finite-family-ℝ⁰⁺ = join-finite-family-type-Large-Join-Semilattice ( large-join-semilattice-ℝ⁰⁺) ( I) ( f)
Properties
The maximum of a finite sequence of nonnegative real numbers is its least upper bound
module _ {l : Level} (n : ℕ) (u : fin-sequence (ℝ⁰⁺ l) n) where abstract is-least-upper-bound-max-fin-sequence-ℝ⁰⁺ : is-least-upper-bound-family-of-elements-Large-Poset ( large-poset-ℝ⁰⁺) ( u) ( max-fin-sequence-ℝ⁰⁺ n u) is-least-upper-bound-max-fin-sequence-ℝ⁰⁺ = is-least-upper-bound-join-fin-sequence-type-Large-Join-Semilattice ( large-join-semilattice-ℝ⁰⁺) ( n) ( u)
The maximum of a finite family of nonnegative real numbers is its least upper bound
module _ {l1 l2 : Level} (I : Finite-Type l1) (f : type-Finite-Type I → ℝ⁰⁺ l2) where abstract is-least-upper-bound-max-finite-family-ℝ⁰⁺ : is-least-upper-bound-family-of-elements-Large-Poset ( large-poset-ℝ⁰⁺) ( f) ( max-finite-family-ℝ⁰⁺ I f) is-least-upper-bound-max-finite-family-ℝ⁰⁺ = is-least-upper-bound-join-finite-family-type-Large-Join-Semilattice ( large-join-semilattice-ℝ⁰⁺) ( I) ( f)
Recent changes
- 2026-02-15. Louis Wasserman. The maximum of finite families of nonnegative numbers (#1815).