The maximum of finite families of nonnegative real numbers

Content created by Louis Wasserman.

Created on 2026-02-15.
Last modified on 2026-02-15.

{-# OPTIONS --lossy-unification #-}

module real-numbers.maximum-finite-families-nonnegative-real-numbers where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.universe-levels

open import lists.finite-sequences

open import order-theory.join-semilattices
open import order-theory.joins-finite-families-large-join-semilattices
open import order-theory.least-upper-bounds-large-posets

open import real-numbers.binary-maximum-nonnegative-real-numbers
open import real-numbers.inequality-nonnegative-real-numbers
open import real-numbers.nonnegative-real-numbers

open import univalent-combinatorics.finite-types

Idea

The maximum of a family of nonnegative real numbers indexed by a finite type is their least upper bound.

Definition

The maximum of a finite sequence of nonnegative real numbers

module _
  {l : Level} (n : ) (u : fin-sequence (ℝ⁰⁺ l) n)
  where

  max-fin-sequence-ℝ⁰⁺ : ℝ⁰⁺ l
  max-fin-sequence-ℝ⁰⁺ =
    join-fin-sequence-type-Large-Join-Semilattice large-join-semilattice-ℝ⁰⁺ n u

The maximum of an finite family of nonnegative real numbers

module _
  {l1 l2 : Level} (I : Finite-Type l1)
  (f : type-Finite-Type I  ℝ⁰⁺ l2)
  where

  max-finite-family-ℝ⁰⁺ : ℝ⁰⁺ l2
  max-finite-family-ℝ⁰⁺ =
    join-finite-family-type-Large-Join-Semilattice
      ( large-join-semilattice-ℝ⁰⁺)
      ( I)
      ( f)

Properties

The maximum of a finite sequence of nonnegative real numbers is its least upper bound

module _
  {l : Level} (n : ) (u : fin-sequence (ℝ⁰⁺ l) n)
  where

  abstract
    is-least-upper-bound-max-fin-sequence-ℝ⁰⁺ :
      is-least-upper-bound-family-of-elements-Large-Poset
        ( large-poset-ℝ⁰⁺)
        ( u)
        ( max-fin-sequence-ℝ⁰⁺ n u)
    is-least-upper-bound-max-fin-sequence-ℝ⁰⁺ =
      is-least-upper-bound-join-fin-sequence-type-Large-Join-Semilattice
        ( large-join-semilattice-ℝ⁰⁺)
        ( n)
        ( u)

The maximum of a finite family of nonnegative real numbers is its least upper bound

module _
  {l1 l2 : Level} (I : Finite-Type l1)
  (f : type-Finite-Type I  ℝ⁰⁺ l2)
  where

  abstract
    is-least-upper-bound-max-finite-family-ℝ⁰⁺ :
      is-least-upper-bound-family-of-elements-Large-Poset
        ( large-poset-ℝ⁰⁺)
        ( f)
        ( max-finite-family-ℝ⁰⁺ I f)
    is-least-upper-bound-max-finite-family-ℝ⁰⁺ =
      is-least-upper-bound-join-finite-family-type-Large-Join-Semilattice
        ( large-join-semilattice-ℝ⁰⁺)
        ( I)
        ( f)

Recent changes