Inequality on integer fractions

Content created by Egbert Rijke, Fernando Chu and Fredrik Bakke.

Created on 2023-04-08.
Last modified on 2023-05-13.

module elementary-number-theory.inequality-integer-fractions where
open import elementary-number-theory.inequality-integers
open import elementary-number-theory.integer-fractions
open import elementary-number-theory.multiplication-integers

open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.universe-levels


A fraction m/n is less (or equal) to a fraction m'/n' iff m * n' is less (or equal) to m' * n.


Inequality of integer fractions

leq-fraction-ℤ-Prop : fraction-ℤ  fraction-ℤ  Prop lzero
leq-fraction-ℤ-Prop (m , n , p) (m' , n' , p') =
  leq-ℤ-Prop (m *ℤ n') (m' *ℤ n)

leq-fraction-ℤ : fraction-ℤ  fraction-ℤ  UU lzero
leq-fraction-ℤ x y = type-Prop (leq-fraction-ℤ-Prop x y)

is-prop-leq-fraction-ℤ : (x y : fraction-ℤ)  is-prop (leq-fraction-ℤ x y)
is-prop-leq-fraction-ℤ x y = is-prop-type-Prop (leq-fraction-ℤ-Prop x y)

Strict inequality of integer fractions

le-fraction-ℤ-Prop : fraction-ℤ  fraction-ℤ  Prop lzero
le-fraction-ℤ-Prop (m , n , p) (m' , n' , p') =
  le-ℤ-Prop (m *ℤ n') (m' *ℤ n)

le-fraction-ℤ : fraction-ℤ  fraction-ℤ  UU lzero
le-fraction-ℤ x y = type-Prop (le-fraction-ℤ-Prop x y)

is-prop-le-fraction-ℤ : (x y : fraction-ℤ)  is-prop (le-fraction-ℤ x y)
is-prop-le-fraction-ℤ x y = is-prop-type-Prop (le-fraction-ℤ-Prop x y)

Recent changes