The poset of right ideals of a ring
Content created by Egbert Rijke, Fredrik Bakke, Julian KG, Maša Žaucer, fernabnor, Gregor Perčič and louismntnu.
Created on 2023-06-08.
Last modified on 2023-11-24.
module ring-theory.poset-of-right-ideals-rings where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.powersets open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-preorders open import order-theory.similarity-of-elements-large-posets open import ring-theory.right-ideals-rings open import ring-theory.rings
Idea
The right ideals of a ring form a large poset ordered by inclusion.
Definition
The inclusion relation on right ideals
module _ {l1 : Level} (R : Ring l1) where leq-prop-right-ideal-Ring : {l2 l3 : Level} → right-ideal-Ring l2 R → right-ideal-Ring l3 R → Prop (l1 ⊔ l2 ⊔ l3) leq-prop-right-ideal-Ring I J = leq-prop-subtype ( subset-right-ideal-Ring R I) ( subset-right-ideal-Ring R J) leq-right-ideal-Ring : {l2 l3 : Level} → right-ideal-Ring l2 R → right-ideal-Ring l3 R → UU (l1 ⊔ l2 ⊔ l3) leq-right-ideal-Ring I J = subset-right-ideal-Ring R I ⊆ subset-right-ideal-Ring R J is-prop-leq-right-ideal-Ring : {l2 l3 : Level} (I : right-ideal-Ring l2 R) (J : right-ideal-Ring l3 R) → is-prop (leq-right-ideal-Ring I J) is-prop-leq-right-ideal-Ring I J = is-prop-leq-subtype ( subset-right-ideal-Ring R I) ( subset-right-ideal-Ring R J) refl-leq-right-ideal-Ring : {l2 : Level} → is-reflexive (leq-right-ideal-Ring {l2}) refl-leq-right-ideal-Ring I = refl-leq-subtype (subset-right-ideal-Ring R I) transitive-leq-right-ideal-Ring : {l2 l3 l4 : Level} (I : right-ideal-Ring l2 R) (J : right-ideal-Ring l3 R) (K : right-ideal-Ring l4 R) → leq-right-ideal-Ring J K → leq-right-ideal-Ring I J → leq-right-ideal-Ring I K transitive-leq-right-ideal-Ring I J K = transitive-leq-subtype ( subset-right-ideal-Ring R I) ( subset-right-ideal-Ring R J) ( subset-right-ideal-Ring R K) antisymmetric-leq-right-ideal-Ring : {l2 : Level} → is-antisymmetric (leq-right-ideal-Ring {l2}) antisymmetric-leq-right-ideal-Ring I J U V = eq-has-same-elements-right-ideal-Ring R I J (λ x → U x , V x)
The large poset of right ideals
module _ {l1 : Level} (R : Ring l1) where right-ideal-Ring-Large-Preorder : Large-Preorder (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) type-Large-Preorder right-ideal-Ring-Large-Preorder l = right-ideal-Ring l R leq-prop-Large-Preorder right-ideal-Ring-Large-Preorder = leq-prop-right-ideal-Ring R refl-leq-Large-Preorder right-ideal-Ring-Large-Preorder = refl-leq-right-ideal-Ring R transitive-leq-Large-Preorder right-ideal-Ring-Large-Preorder = transitive-leq-right-ideal-Ring R right-ideal-Ring-Large-Poset : Large-Poset (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) large-preorder-Large-Poset right-ideal-Ring-Large-Poset = right-ideal-Ring-Large-Preorder antisymmetric-leq-Large-Poset right-ideal-Ring-Large-Poset = antisymmetric-leq-right-ideal-Ring R
The similarity relation on right ideals in a ring
module _ {l1 : Level} (R : Ring l1) where sim-prop-right-ideal-Ring : {l2 l3 : Level} (I : right-ideal-Ring l2 R) (J : right-ideal-Ring l3 R) → Prop (l1 ⊔ l2 ⊔ l3) sim-prop-right-ideal-Ring = sim-prop-Large-Poset (right-ideal-Ring-Large-Poset R) sim-right-ideal-Ring : {l2 l3 : Level} (I : right-ideal-Ring l2 R) (J : right-ideal-Ring l3 R) → UU (l1 ⊔ l2 ⊔ l3) sim-right-ideal-Ring = sim-Large-Poset (right-ideal-Ring-Large-Poset R) is-prop-sim-right-ideal-Ring : {l2 l3 : Level} (I : right-ideal-Ring l2 R) (J : right-ideal-Ring l3 R) → is-prop (sim-right-ideal-Ring I J) is-prop-sim-right-ideal-Ring = is-prop-sim-Large-Poset (right-ideal-Ring-Large-Poset R) eq-sim-right-ideal-Ring : {l2 : Level} (I J : right-ideal-Ring l2 R) → sim-right-ideal-Ring I J → I = J eq-sim-right-ideal-Ring = eq-sim-Large-Poset (right-ideal-Ring-Large-Poset R)
Properties
The forgetful function from right ideals to subsets preserves inclusions
module _ {l : Level} (R : Ring l) where preserves-order-subset-right-ideal-Ring : {l1 l2 : Level} (I : right-ideal-Ring l1 R) (J : right-ideal-Ring l2 R) → leq-right-ideal-Ring R I J → subset-right-ideal-Ring R I ⊆ subset-right-ideal-Ring R J preserves-order-subset-right-ideal-Ring I J H = H subset-right-ideal-hom-large-poset-Ring : hom-Large-Poset ( λ l → l) ( right-ideal-Ring-Large-Poset R) ( powerset-Large-Poset (type-Ring R)) map-hom-Large-Preorder subset-right-ideal-hom-large-poset-Ring = subset-right-ideal-Ring R preserves-order-hom-Large-Preorder subset-right-ideal-hom-large-poset-Ring = preserves-order-subset-right-ideal-Ring
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Fredrik Bakke. Level-universe compatibility patch (#862).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).