Commuting squares of group homomorphisms
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-22.
Last modified on 2024-04-25.
module group-theory.commuting-squares-of-group-homomorphisms where
Imports
open import foundation.commuting-squares-of-maps open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups
Idea
A square of group homomorphisms
f
G -----> H
| |
g | | h
∨ ∨
K -----> L
k
is said to commute if the underlying square of maps
commutes, i.e., if k ∘ g ~ h ∘ f
.
Definitions
Commuting squares of group homomorphisms
module _ {l1 l2 l3 l4 : Level} (G : Group l1) (H : Group l2) (K : Group l3) (L : Group l4) (f : hom-Group G H) (g : hom-Group G K) (h : hom-Group H L) (k : hom-Group K L) where coherence-square-hom-Group : UU (l1 ⊔ l4) coherence-square-hom-Group = coherence-square-maps ( map-hom-Group G H f) ( map-hom-Group G K g) ( map-hom-Group H L h) ( map-hom-Group K L k)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Functoriality of the quotient operation on groups (#838).