Truncated types
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Daniel Gratzer and Elisabeth Stenholm.
Created on 2022-02-07.
Last modified on 2024-11-19.
module foundation-core.truncated-types where
Imports
open import foundation.action-on-identifications-dependent-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.function-extensionality open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.contractible-types open import foundation-core.embeddings open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.retracts-of-types open import foundation-core.transport-along-identifications open import foundation-core.truncation-levels
Idea
The truncatedness of a type is a measure of the complexity of its identity
types. The simplest case is a contractible type. This is the base case of the
inductive definition of truncatedness for types. A type is k+1
-truncated if
its identity types are k
-truncated.
Definition
The condition of truncatedness
is-trunc : {l : Level} (k : 𝕋) → UU l → UU l is-trunc neg-two-𝕋 A = is-contr A is-trunc (succ-𝕋 k) A = (x y : A) → is-trunc k (x = y) is-trunc-eq : {l : Level} {k k' : 𝕋} {A : UU l} → k = k' → is-trunc k A → is-trunc k' A is-trunc-eq refl H = H
The universe of truncated types
Truncated-Type : (l : Level) → 𝕋 → UU (lsuc l) Truncated-Type l k = Σ (UU l) (is-trunc k) module _ {k : 𝕋} {l : Level} where type-Truncated-Type : Truncated-Type l k → UU l type-Truncated-Type = pr1 is-trunc-type-Truncated-Type : (A : Truncated-Type l k) → is-trunc k (type-Truncated-Type A) is-trunc-type-Truncated-Type = pr2
Properties
If a type is k
-truncated, then it is k+1
-truncated
abstract is-trunc-succ-is-trunc : (k : 𝕋) {l : Level} {A : UU l} → is-trunc k A → is-trunc (succ-𝕋 k) A pr1 (is-trunc-succ-is-trunc neg-two-𝕋 H x y) = eq-is-contr H pr2 (is-trunc-succ-is-trunc neg-two-𝕋 H x .x) refl = left-inv (pr2 H x) is-trunc-succ-is-trunc (succ-𝕋 k) H x y = is-trunc-succ-is-trunc k (H x y) truncated-type-succ-Truncated-Type : (k : 𝕋) {l : Level} → Truncated-Type l k → Truncated-Type l (succ-𝕋 k) pr1 (truncated-type-succ-Truncated-Type k A) = type-Truncated-Type A pr2 (truncated-type-succ-Truncated-Type k A) = is-trunc-succ-is-trunc k (is-trunc-type-Truncated-Type A)
The corollary that any -1
-truncated type, i.e., any propoosition, is
k+1
-truncated for any truncation level k
is recorded in
Propositions as is-trunc-is-prop
.
The identity type of a k
-truncated type is k
-truncated
abstract is-trunc-Id : {l : Level} {k : 𝕋} {A : UU l} → is-trunc k A → (x y : A) → is-trunc k (x = y) is-trunc-Id {l} {k} = is-trunc-succ-is-trunc k Id-Truncated-Type : {l : Level} {k : 𝕋} (A : Truncated-Type l (succ-𝕋 k)) → (x y : type-Truncated-Type A) → Truncated-Type l k pr1 (Id-Truncated-Type A x y) = (x = y) pr2 (Id-Truncated-Type A x y) = is-trunc-type-Truncated-Type A x y Id-Truncated-Type' : {l : Level} {k : 𝕋} (A : Truncated-Type l k) → (x y : type-Truncated-Type A) → Truncated-Type l k pr1 (Id-Truncated-Type' A x y) = (x = y) pr2 (Id-Truncated-Type' A x y) = is-trunc-Id (is-trunc-type-Truncated-Type A) x y
k
-truncated types are closed under retracts
module _ {l1 l2 : Level} where is-trunc-retract-of : {k : 𝕋} {A : UU l1} {B : UU l2} → A retract-of B → is-trunc k B → is-trunc k A is-trunc-retract-of {neg-two-𝕋} = is-contr-retract-of _ is-trunc-retract-of {succ-𝕋 k} R H x y = is-trunc-retract-of (retract-eq R x y) (H (pr1 R x) (pr1 R y))
k
-truncated types are closed under equivalences
abstract is-trunc-is-equiv : {l1 l2 : Level} (k : 𝕋) {A : UU l1} (B : UU l2) (f : A → B) → is-equiv f → is-trunc k B → is-trunc k A is-trunc-is-equiv k B f is-equiv-f = is-trunc-retract-of (pair f (pr2 is-equiv-f)) abstract is-trunc-equiv : {l1 l2 : Level} (k : 𝕋) {A : UU l1} (B : UU l2) (e : A ≃ B) → is-trunc k B → is-trunc k A is-trunc-equiv k B (pair f is-equiv-f) = is-trunc-is-equiv k B f is-equiv-f abstract is-trunc-is-equiv' : {l1 l2 : Level} (k : 𝕋) (A : UU l1) {B : UU l2} (f : A → B) → is-equiv f → is-trunc k A → is-trunc k B is-trunc-is-equiv' k A f is-equiv-f is-trunc-A = is-trunc-is-equiv k A ( map-inv-is-equiv is-equiv-f) ( is-equiv-map-inv-is-equiv is-equiv-f) ( is-trunc-A) abstract is-trunc-equiv' : {l1 l2 : Level} (k : 𝕋) (A : UU l1) {B : UU l2} (e : A ≃ B) → is-trunc k A → is-trunc k B is-trunc-equiv' k A (pair f is-equiv-f) = is-trunc-is-equiv' k A f is-equiv-f
If a type embeds into a k+1
-truncated type, then it is k+1
-truncated
abstract is-trunc-is-emb : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-emb f → is-trunc (succ-𝕋 k) B → is-trunc (succ-𝕋 k) A is-trunc-is-emb k f Ef H x y = is-trunc-is-equiv k (f x = f y) (ap f {x} {y}) (Ef x y) (H (f x) (f y)) abstract is-trunc-emb : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A ↪ B) → is-trunc (succ-𝕋 k) B → is-trunc (succ-𝕋 k) A is-trunc-emb k f = is-trunc-is-emb k (map-emb f) (is-emb-map-emb f)
Truncated types are closed under dependent pair types
abstract is-trunc-Σ : {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : A → UU l2} → is-trunc k A → ((x : A) → is-trunc k (B x)) → is-trunc k (Σ A B) is-trunc-Σ {k = neg-two-𝕋} is-trunc-A is-trunc-B = is-contr-Σ' is-trunc-A is-trunc-B is-trunc-Σ {k = succ-𝕋 k} {B = B} is-trunc-A is-trunc-B s t = is-trunc-equiv k ( Σ (pr1 s = pr1 t) (λ p → tr B p (pr2 s) = pr2 t)) ( equiv-pair-eq-Σ s t) ( is-trunc-Σ ( is-trunc-A (pr1 s) (pr1 t)) ( λ p → is-trunc-B (pr1 t) (tr B p (pr2 s)) (pr2 t))) Σ-Truncated-Type : {l1 l2 : Level} {k : 𝕋} (A : Truncated-Type l1 k) (B : type-Truncated-Type A → Truncated-Type l2 k) → Truncated-Type (l1 ⊔ l2) k pr1 (Σ-Truncated-Type A B) = Σ (type-Truncated-Type A) (λ a → type-Truncated-Type (B a)) pr2 (Σ-Truncated-Type A B) = is-trunc-Σ ( is-trunc-type-Truncated-Type A) ( λ a → is-trunc-type-Truncated-Type (B a)) fiber-Truncated-Type : {l1 l2 : Level} {k : 𝕋} (A : Truncated-Type l1 k) (B : Truncated-Type l2 k) (f : type-Truncated-Type A → type-Truncated-Type B) → type-Truncated-Type B → Truncated-Type (l1 ⊔ l2) k fiber-Truncated-Type A B f b = Σ-Truncated-Type A (λ a → Id-Truncated-Type' B (f a) b)
Truncatedness of the base of a truncated dependent sum
abstract is-trunc-base-is-trunc-Σ' : {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : A → UU l2} → ((x : A) → B x) → is-trunc k (Σ A B) → is-trunc k A is-trunc-base-is-trunc-Σ' {k = neg-two-𝕋} {A} {B} = is-contr-base-is-contr-Σ' A B is-trunc-base-is-trunc-Σ' {k = succ-𝕋 k} s is-trunc-ΣAB x y = is-trunc-base-is-trunc-Σ' ( apd s) ( is-trunc-equiv' k ( (x , s x) = (y , s y)) ( equiv-pair-eq-Σ (x , s x) (y , s y)) ( is-trunc-ΣAB (x , s x) (y , s y)))
Products of truncated types are truncated
abstract is-trunc-product : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → is-trunc k A → is-trunc k B → is-trunc k (A × B) is-trunc-product k is-trunc-A is-trunc-B = is-trunc-Σ is-trunc-A (λ x → is-trunc-B) product-Truncated-Type : {l1 l2 : Level} (k : 𝕋) → Truncated-Type l1 k → Truncated-Type l2 k → Truncated-Type (l1 ⊔ l2) k pr1 (product-Truncated-Type k A B) = type-Truncated-Type A × type-Truncated-Type B pr2 (product-Truncated-Type k A B) = is-trunc-product k ( is-trunc-type-Truncated-Type A) ( is-trunc-type-Truncated-Type B) is-trunc-product' : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → (B → is-trunc (succ-𝕋 k) A) → (A → is-trunc (succ-𝕋 k) B) → is-trunc (succ-𝕋 k) (A × B) is-trunc-product' k f g (pair a b) (pair a' b') = is-trunc-equiv k ( Eq-product (pair a b) (pair a' b')) ( equiv-pair-eq (pair a b) (pair a' b')) ( is-trunc-product k (f b a a') (g a b b')) is-trunc-left-factor-product : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → is-trunc k (A × B) → B → is-trunc k A is-trunc-left-factor-product neg-two-𝕋 {A} {B} H b = is-contr-left-factor-product A B H is-trunc-left-factor-product (succ-𝕋 k) H b a a' = is-trunc-left-factor-product k {A = (a = a')} {B = (b = b)} ( is-trunc-equiv' k ( pair a b = pair a' b) ( equiv-pair-eq (pair a b) (pair a' b)) ( H (pair a b) (pair a' b))) ( refl) is-trunc-right-factor-product : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → is-trunc k (A × B) → A → is-trunc k B is-trunc-right-factor-product neg-two-𝕋 {A} {B} H a = is-contr-right-factor-product A B H is-trunc-right-factor-product (succ-𝕋 k) {A} {B} H a b b' = is-trunc-right-factor-product k {A = (a = a)} {B = (b = b')} ( is-trunc-equiv' k ( pair a b = pair a b') ( equiv-pair-eq (pair a b) (pair a b')) ( H (pair a b) (pair a b'))) ( refl)
Products of families of truncated types are truncated
abstract is-trunc-Π : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : A → UU l2} → ((x : A) → is-trunc k (B x)) → is-trunc k ((x : A) → B x) is-trunc-Π neg-two-𝕋 is-trunc-B = is-contr-Π is-trunc-B is-trunc-Π (succ-𝕋 k) is-trunc-B f g = is-trunc-is-equiv k (f ~ g) htpy-eq ( funext f g) ( is-trunc-Π k (λ x → is-trunc-B x (f x) (g x))) type-Π-Truncated-Type' : (k : 𝕋) {l1 l2 : Level} (A : UU l1) (B : A → Truncated-Type l2 k) → UU (l1 ⊔ l2) type-Π-Truncated-Type' k A B = (x : A) → type-Truncated-Type (B x) is-trunc-type-Π-Truncated-Type' : (k : 𝕋) {l1 l2 : Level} (A : UU l1) (B : A → Truncated-Type l2 k) → is-trunc k (type-Π-Truncated-Type' k A B) is-trunc-type-Π-Truncated-Type' k A B = is-trunc-Π k (λ x → is-trunc-type-Truncated-Type (B x)) Π-Truncated-Type' : (k : 𝕋) {l1 l2 : Level} (A : UU l1) (B : A → Truncated-Type l2 k) → Truncated-Type (l1 ⊔ l2) k pr1 (Π-Truncated-Type' k A B) = type-Π-Truncated-Type' k A B pr2 (Π-Truncated-Type' k A B) = is-trunc-type-Π-Truncated-Type' k A B type-Π-Truncated-Type : (k : 𝕋) {l1 l2 : Level} (A : Truncated-Type l1 k) (B : type-Truncated-Type A → Truncated-Type l2 k) → UU (l1 ⊔ l2) type-Π-Truncated-Type k A B = type-Π-Truncated-Type' k (type-Truncated-Type A) B is-trunc-type-Π-Truncated-Type : (k : 𝕋) {l1 l2 : Level} (A : Truncated-Type l1 k) (B : type-Truncated-Type A → Truncated-Type l2 k) → is-trunc k (type-Π-Truncated-Type k A B) is-trunc-type-Π-Truncated-Type k A B = is-trunc-type-Π-Truncated-Type' k (type-Truncated-Type A) B Π-Truncated-Type : (k : 𝕋) {l1 l2 : Level} (A : Truncated-Type l1 k) (B : type-Truncated-Type A → Truncated-Type l2 k) → Truncated-Type (l1 ⊔ l2) k Π-Truncated-Type k A B = Π-Truncated-Type' k (type-Truncated-Type A) B
The type of functions into a truncated type is truncated
abstract is-trunc-function-type : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → is-trunc k B → is-trunc k (A → B) is-trunc-function-type k {A} {B} is-trunc-B = is-trunc-Π k {B = λ (x : A) → B} (λ x → is-trunc-B) function-type-Truncated-Type : {l1 l2 : Level} {k : 𝕋} (A : UU l1) (B : Truncated-Type l2 k) → Truncated-Type (l1 ⊔ l2) k pr1 (function-type-Truncated-Type A B) = A → type-Truncated-Type B pr2 (function-type-Truncated-Type A B) = is-trunc-function-type _ (is-trunc-type-Truncated-Type B) type-hom-Truncated-Type : (k : 𝕋) {l1 l2 : Level} (A : Truncated-Type l1 k) (B : Truncated-Type l2 k) → UU (l1 ⊔ l2) type-hom-Truncated-Type k A B = type-Truncated-Type A → type-Truncated-Type B is-trunc-type-hom-Truncated-Type : (k : 𝕋) {l1 l2 : Level} (A : Truncated-Type l1 k) (B : Truncated-Type l2 k) → is-trunc k (type-hom-Truncated-Type k A B) is-trunc-type-hom-Truncated-Type k A B = is-trunc-function-type k (is-trunc-type-Truncated-Type B) hom-Truncated-Type : (k : 𝕋) {l1 l2 : Level} (A : Truncated-Type l1 k) (B : Truncated-Type l2 k) → Truncated-Type (l1 ⊔ l2) k pr1 (hom-Truncated-Type k A B) = type-hom-Truncated-Type k A B pr2 (hom-Truncated-Type k A B) = is-trunc-type-hom-Truncated-Type k A B
Being truncated is a property
abstract is-prop-is-trunc : {l : Level} (k : 𝕋) (A : UU l) → is-prop (is-trunc k A) is-prop-is-trunc neg-two-𝕋 A = is-property-is-contr is-prop-is-trunc (succ-𝕋 k) A = is-trunc-Π neg-one-𝕋 ( λ x → is-trunc-Π neg-one-𝕋 (λ y → is-prop-is-trunc k (x = y))) is-trunc-Prop : {l : Level} (k : 𝕋) (A : UU l) → Σ (UU l) (is-trunc neg-one-𝕋) pr1 (is-trunc-Prop k A) = is-trunc k A pr2 (is-trunc-Prop k A) = is-prop-is-trunc k A
The type of equivalences between truncated types is truncated
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-trunc-equiv-is-trunc : (k : 𝕋) → is-trunc k A → is-trunc k B → is-trunc k (A ≃ B) is-trunc-equiv-is-trunc k H K = is-trunc-Σ ( is-trunc-function-type k K) ( λ f → is-trunc-Σ ( is-trunc-Σ ( is-trunc-function-type k H) ( λ g → is-trunc-Π k (λ y → is-trunc-Id K (f (g y)) y))) ( λ _ → is-trunc-Σ ( is-trunc-function-type k H) ( λ h → is-trunc-Π k (λ x → is-trunc-Id H (h (f x)) x)))) type-equiv-Truncated-Type : {l1 l2 : Level} {k : 𝕋} (A : Truncated-Type l1 k) (B : Truncated-Type l2 k) → UU (l1 ⊔ l2) type-equiv-Truncated-Type A B = type-Truncated-Type A ≃ type-Truncated-Type B is-trunc-type-equiv-Truncated-Type : {l1 l2 : Level} {k : 𝕋} (A : Truncated-Type l1 k) (B : Truncated-Type l2 k) → is-trunc k (type-equiv-Truncated-Type A B) is-trunc-type-equiv-Truncated-Type A B = is-trunc-equiv-is-trunc _ ( is-trunc-type-Truncated-Type A) ( is-trunc-type-Truncated-Type B) equiv-Truncated-Type : {l1 l2 : Level} {k : 𝕋} (A : Truncated-Type l1 k) (B : Truncated-Type l2 k) → Truncated-Type (l1 ⊔ l2) k pr1 (equiv-Truncated-Type A B) = type-equiv-Truncated-Type A B pr2 (equiv-Truncated-Type A B) = is-trunc-type-equiv-Truncated-Type A B
Recent changes
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).