0
-acyclic types
Content created by Fredrik Bakke and Tom de Jong.
Created on 2023-12-01.
Last modified on 2024-01-09.
module synthetic-homotopy-theory.0-acyclic-types where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.inhabited-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.truncation-levels open import foundation.unit-type open import foundation.universe-levels open import synthetic-homotopy-theory.0-acyclic-maps open import synthetic-homotopy-theory.truncated-acyclic-maps open import synthetic-homotopy-theory.truncated-acyclic-types
Idea
A type is 0
-acyclic if its
suspension is
0
-connected.
We can characterize the 0
-acyclic types as the
inhabited types.
Definition
The predicate of being a 0
-acyclic type
module _ {l : Level} (A : UU l) where is-0-acyclic-Prop : Prop l is-0-acyclic-Prop = is-truncated-acyclic-Prop zero-𝕋 A is-0-acyclic : UU l is-0-acyclic = type-Prop is-0-acyclic-Prop is-prop-is-0-acyclic : is-prop is-0-acyclic is-prop-is-0-acyclic = is-prop-type-Prop is-0-acyclic-Prop
Properties
A type is 0
-acyclic if and only if it is inhabited
module _ {l : Level} {A : UU l} where is-inhabited-is-0-acyclic : is-0-acyclic A → is-inhabited A is-inhabited-is-0-acyclic ac = map-trunc-Prop ( pr1) ( is-surjective-is-0-acyclic-map ( terminal-map A) ( is-truncated-acyclic-map-terminal-map-is-truncated-acyclic A ac) ( star)) is-0-acyclic-is-inhabited : is-inhabited A → is-0-acyclic A is-0-acyclic-is-inhabited h = is-truncated-acyclic-is-truncated-acyclic-map-terminal-map A ( is-0-acyclic-map-is-surjective ( terminal-map A) ( λ u → map-trunc-Prop (λ a → (a , (contraction is-contr-unit u))) ( h)))
See also
Recent changes
- 2024-01-09. Fredrik Bakke. Make type argument explicit for
terminal-map
(#993). - 2023-12-01. Tom de Jong. A type is
1
-acyclic if and only if it is0
-connected (#956).