Commuting tetrahedra of homotopies

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2024-01-11.
Last modified on 2024-02-06.

module foundation.commuting-tetrahedra-of-homotopies where
Imports
open import foundation.commuting-triangles-of-homotopies
open import foundation.universe-levels

open import foundation-core.homotopies

Idea

A commuting tetrahedron of homotopies is a commuting diagram of the form

             top
       f ----------> g
       |  \       ∧  |
       |    \   /    |
  left |      /      | right
       |    /   \    |
       ∨  /       ∨  ∨
       h ----------> i.
            bottom

where f, g, h, and i are functions.

Definition

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  {f g h i : (x : A)  B x}
  (top : f ~ g) (left : f ~ h) (right : g ~ i) (bottom : h ~ i)
  (diagonal-up : h ~ g) (diagonal-down : f ~ i)
  (upper-left : coherence-triangle-homotopies top diagonal-up left)
  (lower-right : coherence-triangle-homotopies bottom right diagonal-up)
  (upper-right : coherence-triangle-homotopies diagonal-down right top)
  (lower-left : coherence-triangle-homotopies diagonal-down bottom left)
  where

  coherence-tetrahedron-homotopies : UU (l1  l2)
  coherence-tetrahedron-homotopies =
    ( ( upper-right) ∙h
      ( right-whisker-concat-coherence-triangle-homotopies
        ( top)
        ( diagonal-up)
        ( left)
        ( upper-left)
        ( right))) ~
    ( ( lower-left) ∙h
      ( left-whisker-concat-coherence-triangle-homotopies
        ( left)
        ( bottom)
        ( right)
        ( diagonal-up)
        ( lower-right)) ∙h
      ( assoc-htpy left diagonal-up right))

  coherence-tetrahedron-homotopies' : UU (l1  l2)
  coherence-tetrahedron-homotopies' =
    ( ( lower-left) ∙h
      ( left-whisker-concat-coherence-triangle-homotopies
        ( left)
        ( bottom)
        ( right)
        ( diagonal-up)
        ( lower-right)) ∙h
      ( assoc-htpy left diagonal-up right)) ~
    ( ( upper-right) ∙h
      ( right-whisker-concat-coherence-triangle-homotopies
        ( top)
        ( diagonal-up)
        ( left)
        ( upper-left)
        ( right)))

Recent changes