Commuting tetrahedra of homotopies
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2024-01-11.
Last modified on 2024-02-06.
module foundation.commuting-tetrahedra-of-homotopies where
Imports
open import foundation.commuting-triangles-of-homotopies open import foundation.universe-levels open import foundation-core.homotopies
Idea
A commuting tetrahedron of homotopies¶ is a commuting diagram of the form
top
f ----------> g
| \ ∧ |
| \ / |
left | / | right
| / \ |
∨ / ∨ ∨
h ----------> i.
bottom
where f
, g
, h
, and i
are functions.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h i : (x : A) → B x} (top : f ~ g) (left : f ~ h) (right : g ~ i) (bottom : h ~ i) (diagonal-up : h ~ g) (diagonal-down : f ~ i) (upper-left : coherence-triangle-homotopies top diagonal-up left) (lower-right : coherence-triangle-homotopies bottom right diagonal-up) (upper-right : coherence-triangle-homotopies diagonal-down right top) (lower-left : coherence-triangle-homotopies diagonal-down bottom left) where coherence-tetrahedron-homotopies : UU (l1 ⊔ l2) coherence-tetrahedron-homotopies = ( ( upper-right) ∙h ( right-whisker-concat-coherence-triangle-homotopies ( top) ( diagonal-up) ( left) ( upper-left) ( right))) ~ ( ( lower-left) ∙h ( left-whisker-concat-coherence-triangle-homotopies ( left) ( bottom) ( right) ( diagonal-up) ( lower-right)) ∙h ( assoc-htpy left diagonal-up right)) coherence-tetrahedron-homotopies' : UU (l1 ⊔ l2) coherence-tetrahedron-homotopies' = ( ( lower-left) ∙h ( left-whisker-concat-coherence-triangle-homotopies ( left) ( bottom) ( right) ( diagonal-up) ( lower-right)) ∙h ( assoc-htpy left diagonal-up right)) ~ ( ( upper-right) ∙h ( right-whisker-concat-coherence-triangle-homotopies ( top) ( diagonal-up) ( left) ( upper-left) ( right)))
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-11. Fredrik Bakke. Rename
3-simplex
totetrahedron
(#996).