Intersections of closed intervals in total orders
Content created by Louis Wasserman.
Created on 2025-10-04.
Last modified on 2025-10-04.
module order-theory.intersections-closed-intervals-total-orders where
Imports
open import foundation.binary-relations open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.intersections-subtypes open import foundation.powersets open import foundation.propositional-truncations open import foundation.universe-levels open import order-theory.closed-intervals-total-orders open import order-theory.greatest-lower-bounds-posets open import order-theory.poset-closed-intervals-total-orders open import order-theory.total-orders
Idea
In a total order T
, two
closed intervals in T
[a, b]
and [c, d]
intersect¶
if a ≤ d
and c ≤ b
.
If [a, b] and [c, d] intersect, their intersection is itself a closed interval.
Definition
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where intersect-prop-closed-interval-Total-Order : Relation-Prop l2 (closed-interval-Total-Order T) intersect-prop-closed-interval-Total-Order ((a , b) , _) ((c , d) , _) = leq-prop-Total-Order T a d ∧ leq-prop-Total-Order T c b intersect-closed-interval-Total-Order : Relation l2 (closed-interval-Total-Order T) intersect-closed-interval-Total-Order = type-Relation-Prop intersect-prop-closed-interval-Total-Order
Properties
Intersection is reflexive
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where refl-intersect-closed-interval-Total-Order : ([a,b] : closed-interval-Total-Order T) → intersect-closed-interval-Total-Order T [a,b] [a,b] refl-intersect-closed-interval-Total-Order ((a , b) , a≤b) = ( a≤b , a≤b)
If two closed intervals intersect, their intersection is a closed interval
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where intersection-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → intersect-closed-interval-Total-Order T [a,b] [c,d] → closed-interval-Total-Order T intersection-closed-interval-Total-Order ((a , b) , a≤b) ((c , d) , c≤d) (a≤d , c≤b) = ( (max-Total-Order T a c , min-Total-Order T b d) , leq-min-leq-both-Total-Order ( T) ( max-Total-Order T a c) ( b) ( d) ( leq-max-leq-both-Total-Order T a c b a≤b c≤b) ( leq-max-leq-both-Total-Order T a c d a≤d c≤d)) abstract is-intersection-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → (H : intersect-closed-interval-Total-Order T [a,b] [c,d]) → subtype-closed-interval-Total-Order T ( intersection-closed-interval-Total-Order [a,b] [c,d] H) = intersection-subtype ( subtype-closed-interval-Total-Order T [a,b]) ( subtype-closed-interval-Total-Order T [c,d]) is-intersection-closed-interval-Total-Order ((a , b) , a≤b) ((c , d) , c≤d) (a≤d , c≤b) = eq-sim-subtype _ _ ( ( λ x (maxac≤x , x≤minbd) → ( ( transitive-leq-Total-Order T a _ x ( maxac≤x) ( leq-left-max-Total-Order T a c) , transitive-leq-Total-Order T x _ b ( leq-left-min-Total-Order T b d) ( x≤minbd)) , ( transitive-leq-Total-Order T c _ x ( maxac≤x) ( leq-right-max-Total-Order T a c) , transitive-leq-Total-Order T x _ d ( leq-right-min-Total-Order T b d) ( x≤minbd)))) , ( λ x ((a≤x , x≤b) , (c≤x , x≤d)) → ( leq-max-leq-both-Total-Order T a c x a≤x c≤x , leq-min-leq-both-Total-Order T x b d x≤b x≤d))) intersect-closed-interval-intersect-subtype-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → intersect-subtype ( subtype-closed-interval-Total-Order T [a,b]) ( subtype-closed-interval-Total-Order T [c,d]) → intersect-closed-interval-Total-Order T [a,b] [c,d] intersect-closed-interval-intersect-subtype-Total-Order [a,b]@((a , b) , a≤b) [c,d]@((c , d) , c≤d) ∃x = let open do-syntax-trunc-Prop ( intersect-prop-closed-interval-Total-Order T [a,b] [c,d]) in do (x , (a≤x , x≤b) , (c≤x , x≤d)) ← ∃x ( transitive-leq-Total-Order T a x d x≤d a≤x , transitive-leq-Total-Order T c x b x≤b c≤x)
If two closed intervals intersect, their intersection is their greatest lower bound
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where abstract is-greatest-binary-lower-bound-intersection-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → (H : intersect-closed-interval-Total-Order T [a,b] [c,d]) → is-greatest-binary-lower-bound-Poset ( poset-closed-interval-Total-Order T) ( [a,b]) ( [c,d]) ( intersection-closed-interval-Total-Order T [a,b] [c,d] H) pr1 ( is-greatest-binary-lower-bound-intersection-closed-interval-Total-Order ((a , b) , a≤b) ((c , d) , c≤d) (a≤d , c≤b) ((e , f) , e≤f)) ((a≤e , f≤b) , (c≤e , f≤d)) = ( leq-max-leq-both-Total-Order T a c e a≤e c≤e , leq-min-leq-both-Total-Order T f b d f≤b f≤d) pr2 ( is-greatest-binary-lower-bound-intersection-closed-interval-Total-Order ((a , b) , a≤b) ((c , d) , c≤d) (a≤d , c≤b) ((e , f) , e≤f)) (maxac≤e , f≤minbd) = ( ( transitive-leq-Total-Order T a _ e ( maxac≤e) ( leq-left-max-Total-Order T a c) , transitive-leq-Total-Order T f _ b ( leq-left-min-Total-Order T b d) ( f≤minbd)) , ( transitive-leq-Total-Order T c _ e ( maxac≤e) ( leq-right-max-Total-Order T a c) , transitive-leq-Total-Order T f _ d ( leq-right-min-Total-Order T b d) ( f≤minbd)))
The intersection of two closed intervals is contained in both
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where abstract leq-left-intersection-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → (H : intersect-closed-interval-Total-Order T [a,b] [c,d]) → leq-closed-interval-Total-Order T ( intersection-closed-interval-Total-Order T [a,b] [c,d] H) ( [a,b]) leq-left-intersection-closed-interval-Total-Order ((a , b) , _) ((c , d) , _) H = ( leq-left-max-Total-Order T a c , leq-left-min-Total-Order T b d) leq-right-intersection-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → (H : intersect-closed-interval-Total-Order T [a,b] [c,d]) → leq-closed-interval-Total-Order T ( intersection-closed-interval-Total-Order T [a,b] [c,d] H) ( [c,d]) leq-right-intersection-closed-interval-Total-Order ((a , b) , _) ((c , d) , _) H = ( leq-right-max-Total-Order T a c , leq-right-min-Total-Order T b d)
Recent changes
- 2025-10-04. Louis Wasserman. Poset of closed intervals (#1563).