Limits of endomaps on the real numbers
Content created by Louis Wasserman.
Created on 2026-01-10.
Last modified on 2026-01-10.
module real-numbers.limits-of-endomaps-real-numbers where
Imports
open import foundation.propositions open import foundation.universe-levels open import metric-spaces.limits-of-maps-metric-spaces open import real-numbers.dedekind-real-numbers open import real-numbers.metric-space-of-real-numbers
Idea
A
limit¶
of an endomap f on the
real numbers at x : ℝ is the
limit of f at x in the
metric space of real numbers.
Definition
is-limit-prop-endomap-ℝ : {l1 l2 : Level} → (ℝ l1 → ℝ l2) → ℝ l1 → ℝ l2 → Prop (lsuc l1 ⊔ l2) is-limit-prop-endomap-ℝ {l1} {l2} = is-point-limit-prop-map-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) is-limit-endomap-ℝ : {l1 l2 : Level} → (ℝ l1 → ℝ l2) → ℝ l1 → ℝ l2 → UU (lsuc l1 ⊔ l2) is-limit-endomap-ℝ f x y = type-Prop (is-limit-prop-endomap-ℝ f x y)
Recent changes
- 2026-01-10. Louis Wasserman. Increasing functions on the real numbers (#1772).