The binary minimum of nonnegative real numbers
Content created by Louis Wasserman.
Created on 2026-02-15.
Last modified on 2026-02-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.binary-minimum-nonnegative-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import order-theory.greatest-lower-bounds-large-posets open import order-theory.large-meet-semilattices open import order-theory.meet-semilattices open import real-numbers.binary-minimum-real-numbers open import real-numbers.inequality-nonnegative-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.rational-real-numbers
Idea
The minimum¶ of two nonnegative real numbers is nonnegative.
Definition
module _ {l1 l2 : Level} (x⁰⁺@(x , 0≤x) : ℝ⁰⁺ l1) (y⁰⁺@(y , 0≤y) : ℝ⁰⁺ l2) where abstract is-nonnegative-min-real-ℝ⁰⁺ : is-nonnegative-ℝ (min-ℝ x y) is-nonnegative-min-real-ℝ⁰⁺ = leq-min-leq-leq-ℝ x y zero-ℝ 0≤x 0≤y min-ℝ⁰⁺ : ℝ⁰⁺ (l1 ⊔ l2) min-ℝ⁰⁺ = (min-ℝ x y , is-nonnegative-min-real-ℝ⁰⁺)
Properties
The binary minimum is a greatest lower bound
module _ {l1 l2 : Level} (x⁰⁺@(x , 0≤x) : ℝ⁰⁺ l1) (y⁰⁺@(y , 0≤y) : ℝ⁰⁺ l2) where abstract is-greatest-binary-lower-bound-min-ℝ⁰⁺ : is-greatest-binary-lower-bound-Large-Poset ( large-poset-ℝ⁰⁺) ( x⁰⁺) ( y⁰⁺) ( min-ℝ⁰⁺ x⁰⁺ y⁰⁺) is-greatest-binary-lower-bound-min-ℝ⁰⁺ (z , _) = is-greatest-binary-lower-bound-min-ℝ x y z
The large poset of nonnegative real numbers has meets
has-meets-large-poset-ℝ⁰⁺ : has-meets-Large-Poset large-poset-ℝ⁰⁺ has-meets-large-poset-ℝ⁰⁺ = λ where .meet-has-meets-Large-Poset → min-ℝ⁰⁺ .is-greatest-binary-lower-bound-meet-has-meets-Large-Poset → is-greatest-binary-lower-bound-min-ℝ⁰⁺
The nonnegative real numbers at a universe level form a meet-semilattice
order-theoretic-meet-semilattice-ℝ⁰⁺ : (l : Level) → Order-Theoretic-Meet-Semilattice (lsuc l) l pr1 (order-theoretic-meet-semilattice-ℝ⁰⁺ l) = poset-ℝ⁰⁺ l pr2 (order-theoretic-meet-semilattice-ℝ⁰⁺ l) x y = ( min-ℝ⁰⁺ x y , is-greatest-binary-lower-bound-min-ℝ⁰⁺ x y)
See also
Recent changes
- 2026-02-15. Louis Wasserman. The maximum of finite families of nonnegative numbers (#1815).