The orbit category of a group
Content created by Fredrik Bakke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module group-theory.category-of-orbits-groups where
Imports
open import category-theory.categories open import category-theory.full-large-subcategories open import category-theory.isomorphisms-in-large-precategories open import category-theory.large-categories open import category-theory.large-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.universe-levels open import group-theory.category-of-group-actions open import group-theory.group-actions open import group-theory.groups open import group-theory.homomorphisms-group-actions open import group-theory.isomorphisms-group-actions open import group-theory.precategory-of-group-actions open import group-theory.transitive-group-actions
Idea
The orbit category of a group 𝒪(G)
is the
full subcategory of the
category of G
-sets consisting of
orbits of G
, i.e. transitive
G
-sets. Equivalently, an orbit of G
is a
G
-set that is
merely equivalent to a
quotient G
-set G/H
for some subgroup H
.
Definitions
The large orbit category of a group
module _ {l1 : Level} (G : Group l1) where orbit-Group-Full-Large-Subcategory : Full-Large-Subcategory (l1 ⊔_) (action-Group-Large-Category G) orbit-Group-Full-Large-Subcategory = is-transitive-prop-action-Group G orbit-Group-Large-Category : Large-Category (λ l → l1 ⊔ lsuc l) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) orbit-Group-Large-Category = large-category-Full-Large-Subcategory ( action-Group-Large-Category G) ( orbit-Group-Full-Large-Subcategory)
The large orbit precategory of a group
module _ {l1 : Level} (G : Group l1) where orbit-Group-Large-Precategory : Large-Precategory (λ l → l1 ⊔ lsuc l) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) orbit-Group-Large-Precategory = large-precategory-Large-Category (orbit-Group-Large-Category G)
The small orbit category of a group
module _ {l1 : Level} (G : Group l1) where orbit-Group-Category : (l2 : Level) → Category (l1 ⊔ lsuc l2) (l1 ⊔ l2) orbit-Group-Category = category-Large-Category (orbit-Group-Large-Category G)
The small orbit precategory of a group
module _ {l1 : Level} (G : Group l1) where orbit-Group-Precategory : (l2 : Level) → Precategory (l1 ⊔ lsuc l2) (l1 ⊔ l2) orbit-Group-Precategory = precategory-Large-Category (orbit-Group-Large-Category G)
External links
- orbit category at Lab
Recent changes
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).