Formalization of results from the literature
Content created by Fredrik Bakke, Vojtěch Štěpančík and Egbert Rijke.
Created on 2024-06-06.
Last modified on 2025-02-19.
This page is currently under construction. To see what’s happening behind the scenes, see the associated GitHub issue #1055.
Modules in the literature namespace
module literature where open import literature.100-theorems public open import literature.1000plus-theorems public open import literature.idempotents-in-intensional-type-theory public open import literature.introduction-to-homotopy-type-theory public open import literature.oeis public open import literature.sequential-colimits-in-homotopy-type-theory public
References
- [OEIS]
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. website. URL: https://oeis.org.
- [Rij22]
- Egbert Rijke. Introduction to Homotopy Type Theory. 12 2022. arXiv:2212.11082.
- [Shu17]
- Michael Shulman. Idempotents in intensional type theory. Logical Methods in Computer Science, 12:1–24, 04 2017. arXiv:1507.03634, doi:10.2168/LMCS-12(3:9)2016.
- [SvDR20]
- Kristina Sojakova, Floris van Doorn, and Egbert Rijke. Sequential Colimits in Homotopy Type Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '20, 845–858. Association for Computing Machinery, 07 2020. doi:10.1145/3373718.3394801.
- [Wie]
- Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.
Recent changes
- 2025-02-19. Vojtěch Štěpančík. Literature overview for Introduction to Homotopy Type Theory (#1333).
- 2025-02-14. Fredrik Bakke. Page for 1000+ theorems (#1324).
- 2024-10-24. Egbert Rijke. Move OEIS to literature (#1208).
- 2024-10-17. Fredrik Bakke. 100 Theorems (#1201).
- 2024-08-21. Fredrik Bakke. Literature – Idempotents in Intensional Type Theory (#1160).