The closure of subsets of metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module metric-spaces.closure-subsets-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.empty-subtypes open import foundation.empty-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.images open import foundation.intersections-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
A
limit point¶
of a subset S
of a
metric space X
is a point x
of X
where
every neighborhood of x
intersects
S
.
The
closure¶
of S
is the set of limit points of S
.
Definition
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X) where closure-subset-Metric-Space : subset-Metric-Space (l1 ⊔ l2 ⊔ l3) X closure-subset-Metric-Space x = Π-Prop ( ℚ⁺) ( λ ε → intersect-prop-subtype (neighborhood-prop-Metric-Space X ε x) S) is-limit-point-subset-Metric-Space : type-Metric-Space X → UU (l1 ⊔ l2 ⊔ l3) is-limit-point-subset-Metric-Space = is-in-subtype closure-subset-Metric-Space
Properties
S
is a subset of its closure
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X) where is-subset-closure-subset-Metric-Space : S ⊆ closure-subset-Metric-Space X S is-subset-closure-subset-Metric-Space x x∈S ε = intro-exists x (refl-neighborhood-Metric-Space X ε x , x∈S)
The closure of the empty set is empty
module _ {l1 l2 : Level} (X : Metric-Space l1 l2) where is-empty-closure-empty-subset-Metric-Space : is-empty-subtype ( closure-subset-Metric-Space X (empty-subset-Metric-Space X)) is-empty-closure-empty-subset-Metric-Space x x∈closure-∅ = let open do-syntax-trunc-Prop empty-Prop in do (s , s∈N1x , s∈∅) ← x∈closure-∅ one-ℚ⁺ map-inv-raise s∈∅
If a Cauchy approximation in S ⊆ X
has a limit in X
, the limit is in the closure of S
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X) where in-closure-limit-cauchy-approximation-subset-Metric-Space : (x : convergent-cauchy-approximation-Metric-Space X) → (x⊆S : (ε : ℚ⁺) → type-Prop (S (map-convergent-cauchy-approximation-Metric-Space X x ε))) → type-Prop (closure-subset-Metric-Space ( X) ( S) ( limit-convergent-cauchy-approximation-Metric-Space X x)) in-closure-limit-cauchy-approximation-subset-Metric-Space (x , lim-x , is-lim-lim-x) x⊆S ε = let xε = map-cauchy-approximation-Metric-Space X x ε in intro-exists ( xε) ( saturated-neighborhood-Metric-Space X ε lim-x xε ( λ δ → symmetric-neighborhood-Metric-Space X _ xε lim-x ( is-lim-lim-x ε δ)) , x⊆S ε)
External links
- Limit point at Wikidata
- Closure at Wikidata
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).