Monomorphisms
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elisabeth Stenholm, Daniel Gratzer and Victor Blanchi.
Created on 2022-03-01.
Last modified on 2026-01-30.
module foundation.monomorphisms where open import foundation-core.monomorphisms public
Imports
open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.logical-equivalences open import foundation.postcomposition-functions open import foundation.precomposition-functions open import foundation.raising-universe-levels open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.small-types
Idea
A function f : A → B is a
monomorphism¶ if whenever
we have two functions g h : X → A such that f ∘ g = f ∘ h, then in fact
g = h. The correct way to state this in Homotopy Type Theory is to say that
postcomposition by f is an
embedding.
Properties
Smallness of the mono predicate
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-mono-is-mono-lub : (l3 l4 : Level) → is-mono (l3 ⊔ l4) f → is-mono l3 f is-mono-is-mono-lub l3 l4 H X = is-emb-bottom-is-emb-top-is-equiv-coherence-square-maps ( postcomp (raise l4 X) f) ( precomp map-raise A) ( precomp map-raise B) ( postcomp X f) ( refl-htpy) ( is-equiv-precomp-is-equiv map-raise is-equiv-map-raise A) ( is-equiv-precomp-is-equiv map-raise is-equiv-map-raise B) ( H (raise l4 X)) is-emb-is-mono-Level : {l3 : Level} → is-mono l3 f → is-emb f is-emb-is-mono-Level {l3} H = is-emb-is-mono-lzero f (is-mono-is-mono-lub lzero l3 H) is-emb-iff-is-mono : {l3 : Level} → is-mono l3 f ↔ is-emb f is-emb-iff-is-mono = (is-emb-is-mono-Level , (λ H → is-mono-is-emb f H)) equiv-is-emb-is-mono : {l3 : Level} → is-mono l3 f ≃ is-emb f equiv-is-emb-is-mono {l3} = equiv-iff' (is-mono-Prop l3 f) (is-emb-Prop f) (is-emb-iff-is-mono) is-small-is-mono : {l3 : Level} → is-small (l1 ⊔ l2) (is-mono l3 f) is-small-is-mono = (is-emb f , equiv-is-emb-is-mono)
Recent changes
- 2026-01-30. Fredrik Bakke. Smallness of the monomorphism predicate (#1749).
- 2025-10-28. Fredrik Bakke. Morphisms of polynomial endofunctors (#1512).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).