Monomorphisms
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elisabeth Stenholm, Daniel Gratzer and Victor Blanchi.
Created on 2022-03-01.
Last modified on 2024-02-06.
module foundation.monomorphisms where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.function-extensionality open import foundation.functoriality-function-types open import foundation.postcomposition-functions open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.truncation-levels
Idea
A function f : A → B
is a monomorphism if whenever we have two functions
g h : X → A
such that f ∘ g = f ∘ h
, then in fact g = h
. The way to state
this in Homotopy Type Theory is to say that postcomposition by f
is an
embedding.
Definition
module _ {l1 l2 : Level} (l3 : Level) {A : UU l1} {B : UU l2} (f : A → B) where is-mono-Prop : Prop (l1 ⊔ l2 ⊔ lsuc l3) is-mono-Prop = Π-Prop (UU l3) λ X → is-emb-Prop (postcomp X f) is-mono : UU (l1 ⊔ l2 ⊔ lsuc l3) is-mono = type-Prop is-mono-Prop is-prop-is-mono : is-prop is-mono is-prop-is-mono = is-prop-type-Prop is-mono-Prop
Properties
If f : A → B
is a monomorphism then for any g h : X → A
we have an
equivalence (f ∘ g = f ∘ h) ≃ (g = h)
. In particular, if f ∘ g = f ∘ h
then
g = h
.
module _ {l1 l2 : Level} (l3 : Level) {A : UU l1} {B : UU l2} (f : A → B) (p : is-mono l3 f) {X : UU l3} (g h : X → A) where equiv-postcomp-is-mono : (g = h) ≃ ((f ∘ g) = (f ∘ h)) pr1 equiv-postcomp-is-mono = ap (f ∘_) pr2 equiv-postcomp-is-mono = p X g h is-injective-postcomp-is-mono : (f ∘ g) = (f ∘ h) → g = h is-injective-postcomp-is-mono = map-inv-equiv equiv-postcomp-is-mono
A function is a monomorphism if and only if it is an embedding.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-mono-is-emb : is-emb f → {l3 : Level} → is-mono l3 f is-mono-is-emb is-emb-f X = is-emb-is-prop-map ( is-trunc-map-postcomp-is-trunc-map neg-one-𝕋 f ( is-prop-map-is-emb is-emb-f) ( X)) is-emb-is-mono : ({l3 : Level} → is-mono l3 f) → is-emb f is-emb-is-mono is-mono-f = is-emb-is-prop-map ( is-trunc-map-is-trunc-map-postcomp neg-one-𝕋 f ( λ X → is-prop-map-is-emb (is-mono-f X)))
We construct an explicit equivalence for postcomposition for homotopies between functions (rather than equality) when the map is an embedding.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A ↪ B) {X : UU l3} (g h : X → A) where map-inv-equiv-htpy-postcomp-is-emb : (pr1 f ∘ g) ~ (pr1 f ∘ h) → g ~ h map-inv-equiv-htpy-postcomp-is-emb H x = map-inv-is-equiv (pr2 f (g x) (h x)) (H x) is-section-map-inv-equiv-htpy-postcomp-is-emb : (pr1 f ·l_) ∘ map-inv-equiv-htpy-postcomp-is-emb ~ id is-section-map-inv-equiv-htpy-postcomp-is-emb H = eq-htpy (λ x → is-section-map-inv-is-equiv (pr2 f (g x) (h x)) (H x)) is-retraction-map-inv-equiv-htpy-postcomp-is-emb : map-inv-equiv-htpy-postcomp-is-emb ∘ (pr1 f ·l_) ~ id is-retraction-map-inv-equiv-htpy-postcomp-is-emb H = eq-htpy (λ x → is-retraction-map-inv-is-equiv (pr2 f (g x) (h x)) (H x)) equiv-htpy-postcomp-is-emb : (g ~ h) ≃ ((pr1 f ∘ g) ~ (pr1 f ∘ h)) pr1 equiv-htpy-postcomp-is-emb = pr1 f ·l_ pr2 equiv-htpy-postcomp-is-emb = is-equiv-is-invertible map-inv-equiv-htpy-postcomp-is-emb is-section-map-inv-equiv-htpy-postcomp-is-emb is-retraction-map-inv-equiv-htpy-postcomp-is-emb
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).