Conjugation in higher groups
Content created by Egbert Rijke.
Created on 2023-07-19.
Last modified on 2023-07-19.
module higher-group-theory.conjugation where
Imports
open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import higher-group-theory.higher-groups open import higher-group-theory.homomorphisms-higher-groups open import structured-types.conjugation-pointed-types open import synthetic-homotopy-theory.conjugation-loops
Idea
The conjugation homomorphism on an
∞-group G
is the
conjugation map of its
classifying pointed type BG
.
Definition
module _ {l : Level} (G : ∞-Group l) (g : type-∞-Group G) where conjugation-∞-Group : hom-∞-Group G G conjugation-∞-Group = conjugation-Pointed-Type (classifying-pointed-type-∞-Group G) g classifying-map-conjugation-∞-Group : classifying-type-∞-Group G → classifying-type-∞-Group G classifying-map-conjugation-∞-Group = classifying-map-hom-∞-Group G G conjugation-∞-Group preserves-point-classifying-map-conjugation-∞-Group : classifying-map-conjugation-∞-Group (shape-∞-Group G) = shape-∞-Group G preserves-point-classifying-map-conjugation-∞-Group = preserves-point-classifying-map-hom-∞-Group G G conjugation-∞-Group map-conjugation-∞-Group : type-∞-Group G → type-∞-Group G map-conjugation-∞-Group = map-hom-∞-Group G G conjugation-∞-Group compute-map-conjugation-∞-Group : map-conjugation-Ω g ~ map-conjugation-∞-Group compute-map-conjugation-∞-Group = htpy-compute-action-on-loops-conjugation-Pointed-Type ( g)
Recent changes
- 2023-07-19. Egbert Rijke. refactoring pointed maps (#682).
- 2023-07-19. Egbert Rijke. Conjugation on higher groups (#681).