Natural transformations between functors between categories
Content created by Fredrik Bakke.
Created on 2023-09-27.
Last modified on 2023-11-01.
module category-theory.natural-transformations-functors-categories where
Imports
open import category-theory.categories open import category-theory.functors-categories open import category-theory.natural-transformations-functors-precategories open import foundation.embeddings open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels
Idea
A natural transformation between functors between categories is a natural transformation between the functors on the underlying precategories.
Definition
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F G : functor-Category C D) where hom-family-functor-Category : UU (l1 ⊔ l4) hom-family-functor-Category = hom-family-functor-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) is-natural-transformation-Category : hom-family-functor-Category → UU (l1 ⊔ l2 ⊔ l4) is-natural-transformation-Category = is-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) natural-transformation-Category : UU (l1 ⊔ l2 ⊔ l4) natural-transformation-Category = natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) hom-family-natural-transformation-Category : natural-transformation-Category → hom-family-functor-Category hom-family-natural-transformation-Category = hom-family-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) naturality-natural-transformation-Category : (γ : natural-transformation-Category) → is-natural-transformation-Category ( hom-family-natural-transformation-Category γ) naturality-natural-transformation-Category = naturality-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G)
Composition and identity of natural transformations
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) where id-natural-transformation-Category : (F : functor-Category C D) → natural-transformation-Category C D F F id-natural-transformation-Category = id-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) comp-natural-transformation-Category : (F G H : functor-Category C D) → natural-transformation-Category C D G H → natural-transformation-Category C D F G → natural-transformation-Category C D F H comp-natural-transformation-Category = comp-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D)
Properties
That a family of morphisms is a natural transformation is a proposition
This follows from the fact that the hom-types are sets.
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) (F G : functor-Category C D) where is-prop-is-natural-transformation-Category : ( γ : hom-family-functor-Category C D F G) → is-prop (is-natural-transformation-Category C D F G γ) is-prop-is-natural-transformation-Category = is-prop-is-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) is-natural-transformation-prop-Category : ( γ : hom-family-functor-Category C D F G) → Prop (l1 ⊔ l2 ⊔ l4) is-natural-transformation-prop-Category = is-natural-transformation-prop-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G)
The set of natural transformations
is-emb-hom-family-natural-transformation-Category : is-emb (hom-family-natural-transformation-Category C D F G) is-emb-hom-family-natural-transformation-Category = is-emb-hom-family-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) is-set-natural-transformation-Category : is-set (natural-transformation-Category C D F G) is-set-natural-transformation-Category = is-set-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) natural-transformation-set-Category : Set (l1 ⊔ l2 ⊔ l4) natural-transformation-set-Category = natural-transformation-set-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) extensionality-natural-transformation-Category : (α β : natural-transformation-Category C D F G) → ( α = β) ≃ ( hom-family-natural-transformation-Category C D F G α ~ hom-family-natural-transformation-Category C D F G β) extensionality-natural-transformation-Category = extensionality-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G) eq-htpy-hom-family-natural-transformation-Category : (α β : natural-transformation-Category C D F G) → ( hom-family-natural-transformation-Category C D F G α ~ hom-family-natural-transformation-Category C D F G β) → α = β eq-htpy-hom-family-natural-transformation-Category = eq-htpy-hom-family-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) ( F) ( G)
Categorical laws for natural transformations
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) where right-unit-law-comp-natural-transformation-Category : {F G : functor-Category C D} (α : natural-transformation-Category C D F G) → comp-natural-transformation-Category C D F F G α ( id-natural-transformation-Category C D F) = α right-unit-law-comp-natural-transformation-Category {F} {G} = right-unit-law-comp-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) F G left-unit-law-comp-natural-transformation-Category : {F G : functor-Category C D} (α : natural-transformation-Category C D F G) → comp-natural-transformation-Category C D F G G ( id-natural-transformation-Category C D G) α = α left-unit-law-comp-natural-transformation-Category {F} {G} = left-unit-law-comp-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D) F G associative-comp-natural-transformation-Category : (F G H I : functor-Category C D) (α : natural-transformation-Category C D F G) (β : natural-transformation-Category C D G H) (γ : natural-transformation-Category C D H I) → comp-natural-transformation-Category C D F G I ( comp-natural-transformation-Category C D G H I γ β) α = comp-natural-transformation-Category C D F H I γ ( comp-natural-transformation-Category C D F G H β α) associative-comp-natural-transformation-Category = associative-comp-natural-transformation-Precategory ( precategory-Category C) ( precategory-Category D)
Recent changes
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).