Monotone convergence theorem for increasing sequences of real numbers
Content created by Fredrik Bakke.
Created on 2026-02-11.
Last modified on 2026-02-11.
module analysis.monotone-convergence-theorem-increasing-sequences-real-numbers where
Imports
open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.axiom-of-countable-choice open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-propositional-truncation open import foundation.universe-levels open import lists.sequences open import real-numbers.addition-positive-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.increasing-sequences-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.limits-of-sequences-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.modulated-suprema-families-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers open import real-numbers.strict-inequality-real-numbers open import real-numbers.suprema-families-real-numbers
Idea
The monotone convergence theorem¶ states that an increasing sequence of real numbers with a modulated supremum converges to that supremum as a limit of sequences. Because modulated suprema are assumed to have supremum moduli, we can still obtain a convergence modulus constructively. Assuming countable choice, ordinary suprema are also modulated, yielding the monotone convergence theorem for ordinary suprema.
Construction
module _ {l : Level} (u : sequence (ℝ l)) (inc-u : is-increasing-sequence-ℝ u) (v : ℝ l) (is-sup-v : is-supremum-family-ℝ u v) where abstract left-leq-neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ : (ε : ℚ⁺) (n : ℕ) → leq-ℝ (u n) (v +ℝ real-ℚ⁺ ε) left-leq-neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ ε n = transitive-leq-ℝ ( u n) ( v) ( v +ℝ real-ℚ⁺ ε) ( leq-left-add-real-ℚ⁺ v ε) ( is-upper-bound-is-supremum-family-ℝ u v is-sup-v n) abstract right-leq-neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ : (ε : ℚ⁺) (n m : ℕ) → leq-ℕ m n → le-ℝ (v -ℝ real-ℚ⁺ ε) (u m) → leq-ℝ v (u n +ℝ real-ℚ⁺ ε) right-leq-neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ ε n m m≤n v-ε<u-m = transitive-leq-ℝ ( v) ( u m +ℝ real-ℚ⁺ ε) ( u n +ℝ real-ℚ⁺ ε) ( preserves-leq-right-add-ℝ (real-ℚ⁺ ε) (u m) (u n) (inc-u m n m≤n)) ( leq-le-ℝ ( le-transpose-left-diff-ℝ ( v) ( real-ℚ⁺ ε) ( u m) ( v-ε<u-m))) abstract neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ : (ε : ℚ⁺) (n m : ℕ) → leq-ℕ m n → le-ℝ (v -ℝ real-ℚ⁺ ε) (u m) → neighborhood-ℝ l ε (u n) v neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ ε n m m≤n v-ε<u-m = neighborhood-real-bound-each-leq-ℝ ( ε) ( u n) ( v) ( left-leq-neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ ( ε) ( n)) ( right-leq-neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ ( ε) ( n) ( m) ( m≤n) ( v-ε<u-m))
Theorem
Monotone convergence theorem for modulated suprema
module _ {l : Level} (u : sequence (ℝ l)) (inc-u : is-increasing-sequence-ℝ u) where abstract is-limit-is-modulated-supremum-is-increasing-sequence-ℝ : (v : ℝ l) → is-modulated-supremum-family-ℝ u v → is-limit-sequence-ℝ u v is-limit-is-modulated-supremum-is-increasing-sequence-ℝ v (is-upper-bound-v , is-modulus-v) = map-trunc-Prop ( λ (μ : (ε : ℚ⁺) → Σ ℕ (λ i → le-ℝ (v -ℝ real-ℚ⁺ ε) (u i))) → ( pr1 ∘ μ , λ ε n mε≤n → neighborhood-le-diff-error-is-supremum-is-increasing-sequence-ℝ ( u) ( inc-u) ( v) ( is-supremum-supremum-modulus-family-ℝ ( u) ( v) ( is-upper-bound-v , μ)) ( ε) ( n) ( pr1 (μ ε)) ( mε≤n) ( pr2 (μ ε)))) ( is-modulus-v)
Monotone convergence theorem for suprema using countable choice
module _ {l : Level} (acℕ : level-ACℕ l) (u : sequence (ℝ l)) (inc-u : is-increasing-sequence-ℝ u) where abstract is-limit-is-supremum-is-increasing-sequence-ACℕ-ℝ : (v : ℝ l) → is-supremum-family-ℝ u v → is-limit-sequence-ℝ u v is-limit-is-supremum-is-increasing-sequence-ACℕ-ℝ v H = is-limit-is-modulated-supremum-is-increasing-sequence-ℝ u ( inc-u) ( v) ( is-modulated-supremum-is-supremum-family-ACℕ-ℝ acℕ ℕ-Set u v H)
External links
- Weierstrass theorem at Wikidata
- Monotone convergence theorem on Wikipedia
Recent changes
- 2026-02-11. Fredrik Bakke. Monotone convergence theorem for increasing sequences of reals (#1812).