Negation of closed intervals in the rational numbers
Content created by Louis Wasserman.
Created on 2025-10-07.
Last modified on 2025-10-08.
module elementary-number-theory.negation-closed-intervals-rational-numbers where
Imports
open import elementary-number-theory.closed-intervals-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.interior-closed-intervals-rational-numbers open import elementary-number-theory.proper-closed-intervals-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.dependent-pair-types
Idea
The
negation¶
of a
closed interval of rational numbers
[a, b]
is [-b, -a]
.
Definition
neg-closed-interval-ℚ : closed-interval-ℚ → closed-interval-ℚ neg-closed-interval-ℚ ((a , b) , a≤b) = ((neg-ℚ b , neg-ℚ a) , neg-leq-ℚ a b a≤b)
Properties
Negation preserves interior intervals
abstract is-interior-neg-closed-interval-ℚ : ([a,b] [c,d] : closed-interval-ℚ) → is-interior-closed-interval-ℚ [a,b] [c,d] → is-interior-closed-interval-ℚ ( neg-closed-interval-ℚ [a,b]) ( neg-closed-interval-ℚ [c,d]) is-interior-neg-closed-interval-ℚ ((a , b) , _) ((c , d) , _) (a<c , d<b) = ( neg-le-ℚ d b d<b , neg-le-ℚ a c a<c)
Negation preserves nontriviality
abstract is-nontrivial-neg-closed-interval-ℚ : ([a,b] : closed-interval-ℚ) → is-proper-closed-interval-ℚ [a,b] → is-proper-closed-interval-ℚ (neg-closed-interval-ℚ [a,b]) is-nontrivial-neg-closed-interval-ℚ ((a , b) , _) a<b = neg-le-ℚ a b a<b
Recent changes
- 2025-10-08. Fredrik Bakke. chore: Fix link warnings for closed intervals (#1574).
- 2025-10-07. Louis Wasserman. Multiplication of interior intervals in the rational numbers (#1561).