Negation of closed intervals in the rational numbers

Content created by Louis Wasserman.

Created on 2025-10-07.
Last modified on 2025-10-08.

module elementary-number-theory.negation-closed-intervals-rational-numbers where
Imports
open import elementary-number-theory.closed-intervals-rational-numbers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.interior-closed-intervals-rational-numbers
open import elementary-number-theory.proper-closed-intervals-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.dependent-pair-types

Idea

The negation of a closed interval of rational numbers [a, b] is [-b, -a].

Definition

neg-closed-interval-ℚ : closed-interval-ℚ  closed-interval-ℚ
neg-closed-interval-ℚ ((a , b) , a≤b) =
  ((neg-ℚ b , neg-ℚ a) , neg-leq-ℚ a b a≤b)

Properties

Negation preserves interior intervals

abstract
  is-interior-neg-closed-interval-ℚ :
    ([a,b] [c,d] : closed-interval-ℚ) 
    is-interior-closed-interval-ℚ [a,b] [c,d] 
    is-interior-closed-interval-ℚ
      ( neg-closed-interval-ℚ [a,b])
      ( neg-closed-interval-ℚ [c,d])
  is-interior-neg-closed-interval-ℚ ((a , b) , _) ((c , d) , _) (a<c , d<b) =
    ( neg-le-ℚ d b d<b , neg-le-ℚ a c a<c)

Negation preserves nontriviality

abstract
  is-nontrivial-neg-closed-interval-ℚ :
    ([a,b] : closed-interval-ℚ)  is-proper-closed-interval-ℚ [a,b] 
    is-proper-closed-interval-ℚ (neg-closed-interval-ℚ [a,b])
  is-nontrivial-neg-closed-interval-ℚ ((a , b) , _) a<b = neg-le-ℚ a b a<b

Recent changes