Functoriality of disjunction
Content created by Louis Wasserman.
Created on 2025-03-27.
Last modified on 2025-09-02.
module foundation.functoriality-disjunction where
Imports
open import foundation.disjunction open import foundation.function-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-propositional-truncation open import foundation.universe-levels
Idea
Any two implications f : A ⇒ B
and g : C ⇒ D
induce an implication
map-disjunction f g : (A ∨ B) ⇒ (C ∨ D)
.
Definitions
The functorial action of disjunction
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) where map-disjunction : disjunction-type A C → disjunction-type B D map-disjunction = map-trunc-Prop (map-coproduct f g)
Recent changes
- 2025-09-02. Louis Wasserman. Metric spaces induced by metric functions (#1520).
- 2025-03-27. Louis Wasserman. Addition on real numbers (#1336).