Functoriality of disjunction
Content created by Louis Wasserman.
Created on 2025-03-27.
Last modified on 2025-03-27.
module foundation.functoriality-disjunction where
Imports
open import foundation.disjunction open import foundation.function-types open import foundation.propositions open import foundation.universe-levels
Idea
Any two implications f : A ⇒ B
and g : C ⇒ D
induce an implication
map-disjunction f g : (A ∨ B) ⇒ (C ∨ D)
.
Definitions
The functorial action of disjunction
module _ {l1 l2 l3 l4 : Level} (A : Prop l1) (B : Prop l2) (C : Prop l3) (D : Prop l4) (f : type-Prop (A ⇒ B)) (g : type-Prop (C ⇒ D)) where map-disjunction : type-Prop ((A ∨ C) ⇒ (B ∨ D)) map-disjunction = elim-disjunction (B ∨ D) (inl-disjunction ∘ f) (inr-disjunction ∘ g)
Recent changes
- 2025-03-27. Louis Wasserman. Addition on real numbers (#1336).