Products of Dirichlet series of species of types in subuniverses
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-05-22.
Last modified on 2024-02-06.
module species.products-dirichlet-series-species-of-types-in-subuniverses where
Imports
open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-dependent-pair-types open import foundation.global-subuniverses open import foundation.homotopies open import foundation.postcomposition-functions open import foundation.subuniverses open import foundation.type-arithmetic-dependent-pair-types open import foundation.universal-property-cartesian-product-types open import foundation.universe-levels open import species.dirichlet-products-species-of-types-in-subuniverses open import species.dirichlet-series-species-of-types-in-subuniverses open import species.species-of-types-in-subuniverses
Idea
The product of two Dirichlet series is the pointwise product.
Definition
module _ {l1 l2 l3 l4 l5 l6 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-products-subuniverse P) (H : species-subuniverse-domain l5 P) (C2 : preserves-product-species-subuniverse-domain P C1 H) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l6) where product-dirichlet-series-species-subuniverse : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) product-dirichlet-series-species-subuniverse = dirichlet-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( C1) ( H) ( C2) ( S) ( X) × dirichlet-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( C1) ( H) ( C2) ( T) ( X)
Properties
The Dirichlet series associated to the Dirichlet product of S
and T
is equal to the product of their Dirichlet series
module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l → l)) (C1 : is-closed-under-products-subuniverse P) (H : species-subuniverse-domain l5 P) (C2 : preserves-product-species-subuniverse-domain P C1 H) (C3 : is-closed-under-dirichlet-product-species-subuniverse P Q) (C4 : is-closed-under-coproducts-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) where private reassociate : dirichlet-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( C1) ( H) ( C2) ( dirichlet-product-species-subuniverse P Q C3 S T) X ≃ Σ ( type-subuniverse P) ( λ A → Σ ( type-subuniverse P) ( λ B → Σ ( Σ ( type-subuniverse P) ( λ F → inclusion-subuniverse P F ≃ ( inclusion-subuniverse P A × inclusion-subuniverse P B))) ( λ F → ( ( inclusion-subuniverse ( subuniverse-global-subuniverse Q l3) ( S A)) × ( inclusion-subuniverse ( subuniverse-global-subuniverse Q l4) ( T B))) × (X → H (pr1 F))))) pr1 reassociate (F , ((A , B , e) , x) , y) = (A , B , (F , e) , x , y) pr2 reassociate = is-equiv-is-invertible ( λ (A , B , (F , e) , x , y) → (F , ((A , B , e) , x) , y)) ( refl-htpy) ( refl-htpy) reassociate' : Σ ( type-subuniverse P) ( λ A → Σ ( type-subuniverse P) ( λ B → ( ( inclusion-subuniverse ( subuniverse-global-subuniverse Q l3) ( S A)) × inclusion-subuniverse ( subuniverse-global-subuniverse Q l4) ( T B)) × ( (X → H A) × (X → H B)))) ≃ product-dirichlet-series-species-subuniverse P Q C1 H C2 S T X pr1 reassociate' (A , B , (s , t) , (fs , ft)) = ((A , (s , fs)) , (B , (t , ft))) pr2 reassociate' = is-equiv-is-invertible ( λ ((A , (s , fs)) , (B , (t , ft))) → (A , B , (s , t) , (fs , ft))) ( refl-htpy) ( refl-htpy) equiv-dirichlet-series-dirichlet-product-species-subuniverse : dirichlet-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( C1) ( H) ( C2) ( dirichlet-product-species-subuniverse P Q C3 S T) ( X) ≃ product-dirichlet-series-species-subuniverse P Q C1 H C2 S T X equiv-dirichlet-series-dirichlet-product-species-subuniverse = ( reassociate') ∘e ( ( equiv-tot ( λ A → equiv-tot ( λ B → ( equiv-product ( id-equiv) ( equiv-up-product ∘e equiv-postcomp X (C2 A B))) ∘e left-unit-law-Σ-is-contr ( is-torsorial-equiv-subuniverse' ( P) ( inclusion-subuniverse P A × inclusion-subuniverse P B , C1 ( is-in-subuniverse-inclusion-subuniverse P A) ( is-in-subuniverse-inclusion-subuniverse P B))) ( ( inclusion-subuniverse P A × inclusion-subuniverse P B , C1 ( is-in-subuniverse-inclusion-subuniverse P A) ( is-in-subuniverse-inclusion-subuniverse P B)) , id-equiv)))) ∘e ( reassociate))
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-14. Fredrik Bakke. Exponentiating retracts of maps (#989).
- 2023-12-10. Fredrik Bakke. Refactor universal property of suspensions (#961).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Fredrik Bakke. Global function classes (#890).