The harmonic series of rational numbers
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-16.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.harmonic-series-rational-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.addition-nonnegative-rational-numbers open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.archimedean-property-rational-numbers open import elementary-number-theory.exponentiation-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.nonzero-natural-numbers open import elementary-number-theory.positive-and-negative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.series-rational-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import elementary-number-theory.sums-of-finite-sequences-of-rational-numbers open import elementary-number-theory.unit-fractions-rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-extensionality open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.transport-along-identifications open import group-theory.abelian-groups open import order-theory.posets open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The harmonic series¶ is the sum
Definition
harmonic-series-ℚ : series-ℚ harmonic-series-ℚ = series-terms-ℚ reciprocal-rational-succ-ℕ
Properties
For any k, the 2ᵏ’th partial sum of the harmonic series is at least 1 + k/2
abstract lower-bound-sum-harmonic-series-power-of-two-ℚ : (k : ℕ) → leq-ℚ ( one-ℚ +ℚ reciprocal-rational-succ-ℕ 1 *ℚ rational-ℕ k) ( partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 k)) lower-bound-sum-harmonic-series-power-of-two-ℚ 0 = leq-eq-ℚ ( inv ( equational-reasoning partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 zero-ℕ) = reciprocal-rational-succ-ℕ 0 by compute-sum-one-element-ℚ _ = one-ℚ by ap rational-ℚ⁺ inv-one-ℚ⁺ = one-ℚ +ℚ zero-ℚ by inv (right-unit-law-add-ℚ one-ℚ) = one-ℚ +ℚ reciprocal-rational-succ-ℕ 1 *ℚ zero-ℚ by ap-add-ℚ refl (inv (right-zero-law-mul-ℚ _)))) lower-bound-sum-harmonic-series-power-of-two-ℚ (succ-ℕ n) = let open inequality-reasoning-Poset ℚ-Poset in chain-of-inequalities one-ℚ +ℚ reciprocal-rational-succ-ℕ 1 *ℚ rational-ℕ (succ-ℕ n) ≤ one-ℚ +ℚ reciprocal-rational-succ-ℕ 1 *ℚ succ-ℚ (rational-ℕ n) by leq-eq-ℚ (ap-add-ℚ refl (ap-mul-ℚ refl (inv (succ-rational-ℕ n)))) ≤ ( one-ℚ) +ℚ ( reciprocal-rational-succ-ℕ 1 +ℚ reciprocal-rational-succ-ℕ 1 *ℚ rational-ℕ n) by leq-eq-ℚ (ap-add-ℚ refl (mul-right-succ-ℚ _ _)) ≤ ( reciprocal-rational-succ-ℕ 1) +ℚ ( one-ℚ +ℚ reciprocal-rational-succ-ℕ 1 *ℚ rational-ℕ n) by leq-eq-ℚ (left-swap-add-ℚ _ _ _) ≤ ( reciprocal-rational-succ-ℕ 1) +ℚ ( partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 n)) by preserves-leq-right-add-ℚ _ _ _ ( lower-bound-sum-harmonic-series-power-of-two-ℚ n) ≤ ( ( rational-ℕ (exp-ℕ 2 n)) *ℚ ( reciprocal-rational-succ-ℕ 1) *ℚ ( reciprocal-rational-ℕ⁺ (exp-ℕ⁺ two-ℕ⁺ n))) +ℚ ( partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 n)) by leq-eq-ℚ ( ap-add-ℚ ( inv ( ap ( rational-ℚ⁺) ( is-identity-left-conjugation-Ab ( abelian-group-mul-ℚ⁺) ( positive-rational-ℕ⁺ (exp-ℕ⁺ two-ℕ⁺ n)) ( positive-reciprocal-rational-succ-ℕ 1)))) ( refl)) ≤ ( ( rational-ℕ (exp-ℕ 2 n)) *ℚ ( ( reciprocal-rational-succ-ℕ 1) *ℚ ( reciprocal-rational-ℕ⁺ (exp-ℕ⁺ two-ℕ⁺ n)))) +ℚ ( partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 n)) by leq-eq-ℚ (ap-add-ℚ (associative-mul-ℚ _ _ _) refl) ≤ ( ( rational-ℕ (exp-ℕ 2 n)) *ℚ ( ( reciprocal-rational-ℕ⁺ (exp-ℕ⁺ two-ℕ⁺ n)) *ℚ ( reciprocal-rational-succ-ℕ 1))) +ℚ ( partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 n)) by leq-eq-ℚ (ap-add-ℚ (ap-mul-ℚ refl (commutative-mul-ℚ _ _)) refl) ≤ ( ( rational-ℕ (exp-ℕ 2 n)) *ℚ ( reciprocal-rational-ℕ⁺ (exp-ℕ⁺ two-ℕ⁺ (succ-ℕ n)))) +ℚ ( partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 n)) by leq-eq-ℚ ( ap-add-ℚ ( ap-mul-ℚ ( refl) ( ( inv ( distributive-reciprocal-mul-ℕ⁺ ( exp-ℕ⁺ two-ℕ⁺ n) ( two-ℕ⁺))) ∙ ( ap ( reciprocal-rational-ℕ⁺) ( eq-nonzero-ℕ { exp-ℕ⁺ two-ℕ⁺ n *ℕ⁺ two-ℕ⁺} { exp-ℕ⁺ two-ℕ⁺ (succ-ℕ n)} ( refl))))) ( refl)) ≤ ( sum-fin-sequence-ℚ ( exp-ℕ 2 n) ( λ _ → reciprocal-rational-ℕ⁺ (exp-ℕ⁺ two-ℕ⁺ (succ-ℕ n)))) +ℚ ( partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 n)) by leq-eq-ℚ (ap-add-ℚ (inv (sum-constant-fin-sequence-ℚ _ _)) refl) ≤ ( sum-fin-sequence-ℚ ( exp-ℕ 2 n) ( λ k → reciprocal-rational-succ-ℕ ( nat-Fin ( exp-ℕ 2 n +ℕ exp-ℕ 2 n) ( inr-coproduct-Fin (exp-ℕ 2 n) (exp-ℕ 2 n) k)))) +ℚ ( sum-fin-sequence-ℚ ( exp-ℕ 2 n) ( λ k → reciprocal-rational-succ-ℕ (nat-Fin (exp-ℕ 2 n) k))) by preserves-leq-left-add-ℚ _ _ _ ( preserves-leq-sum-fin-sequence-ℚ ( exp-ℕ 2 n) ( _) ( _) ( λ k → inv-leq-ℚ⁺ _ _ ( preserves-leq-rational-ℕ ( leq-succ-le-ℕ ( nat-Fin (exp-ℕ 2 n +ℕ exp-ℕ 2 n) _) ( exp-ℕ 2 (succ-ℕ n)) ( inv-tr ( le-ℕ _) ( right-two-law-mul-ℕ _) ( strict-upper-bound-nat-Fin _ _)))))) ≤ ( sum-fin-sequence-ℚ ( exp-ℕ 2 n) ( λ k → reciprocal-rational-succ-ℕ ( nat-Fin ( exp-ℕ 2 n +ℕ exp-ℕ 2 n) ( inr-coproduct-Fin (exp-ℕ 2 n) (exp-ℕ 2 n) k)))) +ℚ ( sum-fin-sequence-ℚ ( exp-ℕ 2 n) ( λ k → reciprocal-rational-succ-ℕ ( nat-Fin ( exp-ℕ 2 n +ℕ exp-ℕ 2 n) ( inl-coproduct-Fin (exp-ℕ 2 n) (exp-ℕ 2 n) k)))) by leq-eq-ℚ ( ap-add-ℚ ( refl) ( ap ( sum-fin-sequence-ℚ (exp-ℕ 2 n)) ( eq-htpy ( λ k → ap ( reciprocal-rational-succ-ℕ) ( inv (nat-inl-coproduct-Fin _ _ k)))))) ≤ ( sum-fin-sequence-ℚ ( exp-ℕ 2 n) ( λ k → reciprocal-rational-succ-ℕ ( nat-Fin ( exp-ℕ 2 n +ℕ exp-ℕ 2 n) ( inl-coproduct-Fin (exp-ℕ 2 n) (exp-ℕ 2 n) k)))) +ℚ ( sum-fin-sequence-ℚ ( exp-ℕ 2 n) ( λ k → reciprocal-rational-succ-ℕ ( nat-Fin ( exp-ℕ 2 n +ℕ exp-ℕ 2 n) ( inr-coproduct-Fin (exp-ℕ 2 n) (exp-ℕ 2 n) k)))) by leq-eq-ℚ (commutative-add-ℚ _ _) ≤ sum-fin-sequence-ℚ ( exp-ℕ 2 n +ℕ exp-ℕ 2 n) ( λ k → reciprocal-rational-succ-ℕ (nat-Fin (exp-ℕ 2 n +ℕ exp-ℕ 2 n) k)) by leq-eq-ℚ (inv (split-sum-fin-sequence-ℚ _ _ _)) ≤ sum-fin-sequence-ℚ ( exp-ℕ 2 (succ-ℕ n)) ( reciprocal-rational-succ-ℕ ∘ nat-Fin (exp-ℕ 2 (succ-ℕ n))) by leq-eq-ℚ ( ap ( λ k → sum-fin-sequence-ℚ k (reciprocal-rational-succ-ℕ ∘ nat-Fin k)) ( inv (right-two-law-mul-ℕ _)))
The harmonic series diverges
The divergence of the harmonic series is the 34th theorem on Freek Wiedijk’s list of 100 theorems [Wie].
abstract grows-without-bound-harmonic-series-ℚ : grows-without-bound-series-ℚ harmonic-series-ℚ grows-without-bound-harmonic-series-ℚ q = let open do-syntax-trunc-Prop ( ∃ ℕ (partial-sum-stays-above-prop-series-ℚ harmonic-series-ℚ q)) open inequality-reasoning-Poset ℚ-Poset in do (n , 2q<n) ← exists-greater-natural-ℚ (rational-ℕ 2 *ℚ q) intro-exists ( exp-ℕ 2 n) ( λ k 2ⁿ≤k → chain-of-inequalities q ≤ reciprocal-rational-succ-ℕ 1 *ℚ (rational-ℕ 2 *ℚ q) by leq-eq-ℚ ( inv ( is-retraction-left-div-ℚ⁺ ( positive-rational-ℕ⁺ two-ℕ⁺) ( q))) ≤ reciprocal-rational-succ-ℕ 1 *ℚ rational-ℕ n by preserves-leq-left-mul-ℚ⁺ ( positive-reciprocal-rational-succ-ℕ 1) ( _) ( _) ( leq-le-ℚ 2q<n) ≤ one-ℚ +ℚ reciprocal-rational-succ-ℕ 1 *ℚ rational-ℕ n by is-inflationary-map-left-add-rational-ℚ⁰⁺ one-ℚ⁰⁺ _ ≤ partial-sum-series-ℚ harmonic-series-ℚ (exp-ℕ 2 n) by lower-bound-sum-harmonic-series-power-of-two-ℚ n ≤ partial-sum-series-ℚ harmonic-series-ℚ k by is-increasing-partial-sum-is-nonnegative-term-series-ℚ ( harmonic-series-ℚ) ( λ m → is-nonnegative-is-positive-ℚ ( is-positive-rational-ℚ⁺ ( positive-reciprocal-rational-succ-ℕ m))) ( exp-ℕ 2 n) ( k) ( 2ⁿ≤k))
References
- [Wie]
- Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.
External links
- Harmonic series at Wikidata
Recent changes
- 2025-11-16. Louis Wasserman. The harmonic series diverges (#1708).