Limits of sequences in metric abelian groups
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
module analysis.limits-of-sequences-metric-abelian-groups where
Imports
open import analysis.metric-abelian-groups open import analysis.sequences-metric-abelian-groups open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import lists.sequences open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces
Idea
A limit¶ of a sequence in a metric abelian group is a limit of the sequence in the corresponding metric space.
Definition
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) (u : sequence-type-Metric-Ab G) (lim : type-Metric-Ab G) where is-limit-modulus-prop-sequence-Metric-Ab : subtype l2 (ℚ⁺ → ℕ) is-limit-modulus-prop-sequence-Metric-Ab = is-limit-modulus-prop-sequence-Metric-Space (metric-space-Metric-Ab G) u lim is-limit-modulus-sequence-Metric-Ab : (ℚ⁺ → ℕ) → UU l2 is-limit-modulus-sequence-Metric-Ab = is-in-subtype is-limit-modulus-prop-sequence-Metric-Ab is-limit-prop-sequence-Metric-Ab : Prop l2 is-limit-prop-sequence-Metric-Ab = is-limit-prop-sequence-Metric-Space (metric-space-Metric-Ab G) u lim is-limit-sequence-Metric-Ab : UU l2 is-limit-sequence-Metric-Ab = type-Prop is-limit-prop-sequence-Metric-Ab
Properties
The addition of sequences adds their limits
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) {u v : sequence-type-Metric-Ab G} {lim-u lim-v : type-Metric-Ab G} where abstract is-limit-add-sequence-Metric-Ab : is-limit-sequence-Metric-Ab G u lim-u → is-limit-sequence-Metric-Ab G v lim-v → is-limit-sequence-Metric-Ab ( G) ( add-sequence-type-Metric-Ab G u v) ( add-Metric-Ab G lim-u lim-v) is-limit-add-sequence-Metric-Ab is-lim-u is-lim-v = is-limit-map-sequence-modulated-ucont-map-Metric-Space ( product-Metric-Space ( metric-space-Metric-Ab G) ( metric-space-Metric-Ab G)) ( metric-space-Metric-Ab G) ( modulated-ucont-map-add-pair-Metric-Ab G) ( pair-sequence u v) ( lim-u , lim-v) ( is-limit-pair-sequence-Metric-Space ( metric-space-Metric-Ab G) ( metric-space-Metric-Ab G) ( is-lim-u) ( is-lim-v))
The negation of a sequence negates its limit
module _ {l1 l2 : Level} (G : Metric-Ab l1 l2) {u : sequence-type-Metric-Ab G} {lim-u : type-Metric-Ab G} where abstract is-limit-neg-sequence-Metric-Ab : is-limit-sequence-Metric-Ab G u lim-u → is-limit-sequence-Metric-Ab ( G) ( neg-sequence-type-Metric-Ab G u) ( neg-Metric-Ab G lim-u) is-limit-neg-sequence-Metric-Ab = is-limit-map-sequence-isometry-Metric-Space ( metric-space-Metric-Ab G) ( metric-space-Metric-Ab G) ( isometry-neg-Metric-Ab G) ( u) ( lim-u)
Recent changes
- 2026-01-11. Louis Wasserman. Alternation of sequences (#1763).