Discrete globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.discrete-globular-types where
Imports
open import foundation.dependent-pair-types open import foundation.discrete-binary-relations open import foundation.propositions open import foundation.universe-levels open import globular-types.empty-globular-types open import globular-types.globular-types
Idea
A globular type G
is said to be
discrete¶
if it has no 1-cells, i.e., if the type G₁ x y
of 1-cells from x
to y
in
G
is empty for any two 0-cells x y : G₀
. In
other words, a globular type is discrete if its
binary relation is
discrete.
The forgetful functor from globular types to types given by G ↦ G₀
has a left
adjoint, mapping a type A
to the globular type with the type A
as its
0-cells and no edges. The image of this left adjoint is precisely the type of
discrete globular types.
Note that the globular type obtained from a type and its iterated identity types is the standard discrete reflexive globular type.
Definitions
The predicate on globular types of being discrete
module _ {l1 l2 : Level} (G : Globular-Type l1 l2) where is-discrete-prop-Globular-Type : Prop (l1 ⊔ l2) is-discrete-prop-Globular-Type = is-discrete-prop-Relation (1-cell-Globular-Type G) is-discrete-Globular-Type : UU (l1 ⊔ l2) is-discrete-Globular-Type = is-discrete-Relation (1-cell-Globular-Type G) is-prop-is-discrete-Globular-Type : is-prop is-discrete-Globular-Type is-prop-is-discrete-Globular-Type = is-prop-is-discrete-Relation (1-cell-Globular-Type G)
Discrete globular types
Discrete-Globular-Type : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Discrete-Globular-Type l1 l2 = Σ (Globular-Type l1 l2) is-discrete-Globular-Type
The standard discrete globular types
discrete-Globular-Type : {l : Level} (A : UU l) → Globular-Type l lzero 0-cell-Globular-Type (discrete-Globular-Type A) = A 1-cell-globular-type-Globular-Type (discrete-Globular-Type A) x y = empty-Globular-Type
See also
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).