Epimorphisms with respect to maps into sets

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Tom de Jong, Elisabeth Stenholm and Daniel Gratzer.

Created on 2022-02-17.
Last modified on 2024-04-11.

module foundation.epimorphisms-with-respect-to-sets where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.function-extensionality
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.propositional-extensionality
open import foundation.propositional-truncations
open import foundation.sets
open import foundation.surjective-maps
open import foundation.unit-type
open import foundation.universe-levels

open import foundation-core.embeddings
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.precomposition-functions
open import foundation-core.propositional-maps
open import foundation-core.propositions
open import foundation-core.univalence

Idea

An epimorphism with respect to maps into sets are maps f : A → B such that for every set C the precomposition function (B → C) → (A → C) is an embedding.

Definition

is-epimorphism-Set :
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  (f : A  B)  UUω
is-epimorphism-Set f =
  {l : Level} (C : Set l)  is-emb (precomp f (type-Set C))

Properties

Surjective maps are epimorphisms with respect to maps into sets

abstract
  is-epimorphism-is-surjective-Set :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A  B} 
    is-surjective f  is-epimorphism-Set f
  is-epimorphism-is-surjective-Set H C =
    is-emb-is-injective
      ( is-set-function-type (is-set-type-Set C))
      ( λ {g} {h} p 
        eq-htpy
          ( λ b 
            apply-universal-property-trunc-Prop
              ( H b)
              ( Id-Prop C (g b) (h b))
              ( λ u 
                ( inv (ap g (pr2 u))) 
                ( htpy-eq p (pr1 u)) 
                ( ap h (pr2 u)))))

Maps that are epimorphisms with respect to maps into sets are surjective

abstract
  is-surjective-is-epimorphism-Set :
    {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A  B} 
    is-epimorphism-Set f  is-surjective f
  is-surjective-is-epimorphism-Set {l1} {l2} {A} {B} {f} H b =
    map-equiv
      ( equiv-eq
        ( ap
          ( pr1)
          ( htpy-eq
            ( is-injective-is-emb
              ( H (Prop-Set (l1  l2)))
              { g}
              { h}
              ( eq-htpy
                ( λ a 
                  eq-iff
                    ( λ _  unit-trunc-Prop (pair a refl))
                    ( λ _  raise-star))))
            ( b))))
      ( raise-star)
    where
    g : B  Prop (l1  l2)
    g y = raise-unit-Prop (l1  l2)
    h : B  Prop (l1  l2)
    h y = exists-structure-Prop A  x  f x  y)

There is at most one extension of a map into a set along a surjection

For any surjective map f : A ↠ B and any map g : A → C into a set C, the type of extensions

  Σ (B → C) (λ h → g ~ h ∘ f)

of g along f is a proposition. In The universal property of set quotients we will show that this proposition is equivalent to the proposition

  (a a' : A) → f a = f a' → g a = g a'.
module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  (C : Set l3) (g : A  type-Set C)
  where

  extension-along-surjection-Set : UU (l1  l2  l3)
  extension-along-surjection-Set =
    Σ (B  type-Set C)  h  g ~ h  map-surjection f)

  abstract
    is-prop-extension-along-surjection-Set :
      is-prop extension-along-surjection-Set
    is-prop-extension-along-surjection-Set =
      is-prop-equiv'
        ( equiv-tot  h  equiv-funext ∘e equiv-inv _ g))
        ( is-prop-map-is-emb
          ( is-epimorphism-is-surjective-Set
            ( is-surjective-map-surjection f)
            ( C))
          ( g))

See also

Recent changes