Finite total orders
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-10-16.
Last modified on 2024-02-06.
module order-theory.finite-total-orders where
Imports
open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.propositions open import foundation.universe-levels open import order-theory.finite-posets open import order-theory.posets open import order-theory.total-orders open import univalent-combinatorics.finite-types
Definitions
A finite total order is a total order of which the underlying type is finite, and of which the ordering relation is decidable.
module _ {l1 l2 : Level} (P : Total-Order l1 l2) where is-finite-Total-Order-Prop : Prop (l1 ⊔ l2) is-finite-Total-Order-Prop = is-finite-Poset-Prop (poset-Total-Order P) is-finite-Total-Order : UU (l1 ⊔ l2) is-finite-Total-Order = is-finite-Poset (poset-Total-Order P) is-prop-is-finite-Total-Order : is-prop is-finite-Total-Order is-prop-is-finite-Total-Order = is-prop-is-finite-Poset (poset-Total-Order P) is-finite-type-is-finite-Total-Order : is-finite-Total-Order → is-finite (type-Total-Order P) is-finite-type-is-finite-Total-Order = is-finite-type-is-finite-Poset (poset-Total-Order P) is-decidable-leq-is-finite-Total-Order : is-finite-Total-Order → (x y : type-Total-Order P) → is-decidable (leq-Total-Order P x y) is-decidable-leq-is-finite-Total-Order = is-decidable-leq-is-finite-Poset (poset-Total-Order P) is-finite-total-order-Poset-Prop : {l1 l2 : Level} (P : Poset l1 l2) → Prop (l1 ⊔ l2) is-finite-total-order-Poset-Prop P = product-Prop ( is-total-Poset-Prop P) ( is-finite-Poset-Prop P) Total-Order-𝔽 : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Total-Order-𝔽 l1 l2 = Σ ( Poset-𝔽 l1 l2) ( λ P → is-total-Poset (poset-Poset-𝔽 P)) poset-𝔽-Total-Order-𝔽 : {l1 l2 : Level} → Total-Order-𝔽 l1 l2 → Poset-𝔽 l1 l2 poset-𝔽-Total-Order-𝔽 = pr1 poset-Total-Order-𝔽 : {l1 l2 : Level} → Total-Order-𝔽 l1 l2 → Poset l1 l2 poset-Total-Order-𝔽 = poset-Poset-𝔽 ∘ poset-𝔽-Total-Order-𝔽 is-total-Total-Order-𝔽 : {l1 l2 : Level} (P : Total-Order-𝔽 l1 l2) → is-total-Poset (poset-Total-Order-𝔽 P) is-total-Total-Order-𝔽 = pr2 total-order-Total-Order-𝔽 : {l1 l2 : Level} → Total-Order-𝔽 l1 l2 → Total-Order l1 l2 pr1 (total-order-Total-Order-𝔽 P) = poset-Total-Order-𝔽 P pr2 (total-order-Total-Order-𝔽 P) = is-total-Total-Order-𝔽 P type-Total-Order-𝔽 : {l1 l2 : Level} → Total-Order-𝔽 l1 l2 → UU l1 type-Total-Order-𝔽 = type-Poset ∘ poset-Total-Order-𝔽
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-10-20. Fredrik Bakke and Egbert Rijke. Small subcategories (#861).
- 2023-10-16. Fredrik Bakke. The simplex precategory (#845).