Opposite posets
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.opposite-posets where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.opposite-preorders open import order-theory.order-preserving-maps-posets open import order-theory.posets open import order-theory.preorders
Idea
Let X
be a poset, its
opposite¶ Xᵒᵖ
is
given by reversing the relation.
Definition
The opposite poset
module _ {l1 l2 : Level} (P : Poset l1 l2) where preorder-opposite-Poset : Preorder l1 l2 preorder-opposite-Poset = opposite-Preorder (preorder-Poset P) type-opposite-Poset : UU l1 type-opposite-Poset = type-Preorder preorder-opposite-Poset leq-prop-opposite-Poset : (X Y : type-opposite-Poset) → Prop l2 leq-prop-opposite-Poset = leq-prop-Preorder preorder-opposite-Poset leq-opposite-Poset : (X Y : type-opposite-Poset) → UU l2 leq-opposite-Poset = leq-Preorder preorder-opposite-Poset transitive-leq-opposite-Poset : (X Y Z : type-opposite-Poset) → leq-opposite-Poset Y Z → leq-opposite-Poset X Y → leq-opposite-Poset X Z transitive-leq-opposite-Poset = transitive-leq-Preorder preorder-opposite-Poset refl-leq-opposite-Poset : (X : type-opposite-Poset) → leq-opposite-Poset X X refl-leq-opposite-Poset = refl-leq-Preorder preorder-opposite-Poset antisymmetric-leq-opposite-Poset : (X Y : type-opposite-Poset) → leq-opposite-Poset X Y → leq-opposite-Poset Y X → X = Y antisymmetric-leq-opposite-Poset X Y p q = antisymmetric-leq-Poset P X Y q p opposite-Poset : Poset l1 l2 opposite-Poset = ( preorder-opposite-Poset , antisymmetric-leq-opposite-Poset)
The opposite functorial action on order preserving maps of posets
module _ {l1 l2 l3 l4 : Level} (P : Poset l1 l2) (Q : Poset l3 l4) where opposite-hom-Poset : hom-Poset P Q → hom-Poset (opposite-Poset P) (opposite-Poset Q) opposite-hom-Poset = opposite-hom-Preorder (preorder-Poset P) (preorder-Poset Q)
Properties
The opposite poset construction is a strict involution
module _ {l1 l2 : Level} (P : Poset l1 l2) where is-involution-opposite-Poset : opposite-Poset (opposite-Poset P) = P is-involution-opposite-Poset = refl module _ {l1 l2 l3 l4 : Level} (P : Poset l1 l2) (Q : Poset l3 l4) (f : hom-Poset P Q) where is-involution-opposite-hom-Poset : opposite-hom-Poset ( opposite-Poset P) ( opposite-Poset Q) ( opposite-hom-Poset P Q f) = f is-involution-opposite-hom-Poset = refl
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).