Composition of Cauchy series of species of types in subuniverses

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-04-27.
Last modified on 2025-08-30.

module species.composition-cauchy-series-species-of-types-in-subuniverses where
Imports
open import foundation.equivalences
open import foundation.global-subuniverses
open import foundation.sigma-closed-subuniverses
open import foundation.subuniverses
open import foundation.universe-levels

open import species.cauchy-composition-species-of-types
open import species.cauchy-composition-species-of-types-in-subuniverses
open import species.cauchy-series-species-of-types
open import species.cauchy-series-species-of-types-in-subuniverses
open import species.composition-cauchy-series-species-of-types
open import species.species-of-types-in-subuniverses

Idea

The composition of Cauchy series of two species of types in subuniverses S and T at X is defined as the Cauchy series of S applied to the Cauchy series of T at X.

Definition

module _
  {α : Level  Level} {l1 l2 l3 l4 l5 : Level}
  (P : subuniverse l1 l2) (Q : global-subuniverse α)
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (T : species-subuniverse P (subuniverse-global-subuniverse Q l4))
  (X : UU l5)
  where

  composition-cauchy-series-species-subuniverse :
    UU (lsuc l1  l2  l3  l4  l5)
  composition-cauchy-series-species-subuniverse =
    cauchy-series-species-subuniverse
      ( P)
      ( subuniverse-global-subuniverse Q l3)
      ( S)
      ( cauchy-series-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l4)
        ( T)
        ( X))

Property

Equivalent form with species of types

module _
  {α : Level  Level} {l1 l2 l3 l4 l5 : Level}
  (P : subuniverse l1 l2) (Q : global-subuniverse α)
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (T : species-subuniverse P (subuniverse-global-subuniverse Q l4))
  (X : UU l5)
  where

  equiv-composition-cauchy-series-Σ-extension-species-subuniverse :
    composition-cauchy-series-species-types
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l3)
        ( S))
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l4)
        ( T))
      ( X) 
    composition-cauchy-series-species-subuniverse P Q S T X
  equiv-composition-cauchy-series-Σ-extension-species-subuniverse =
    ( inv-equiv
      ( equiv-cauchy-series-Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l3)
        ( S)
        ( cauchy-series-species-subuniverse
          ( P)
          ( subuniverse-global-subuniverse Q l4)
          ( T)
          ( X)))) ∘e
    ( equiv-cauchy-series-species-types
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l3)
        ( S))
      ( inv-equiv
        ( equiv-cauchy-series-Σ-extension-species-subuniverse
          ( P)
          ( subuniverse-global-subuniverse Q l4)
          ( T)
          ( X))))

The Cauchy series associated to the composition of the species S and T is the composition of their Cauchy series

module _
  {α : Level  Level} {l1 l2 l3 l4 l5 : Level}
  (P : subuniverse l1 l2) (Q : global-subuniverse α)
  (C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
  (C2 : is-closed-under-Σ-subuniverse P)
  (S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
  (T : species-subuniverse P (subuniverse-global-subuniverse Q l4))
  (X : UU l5)
  where

  equiv-cauchy-series-composition-species-subuniverse :
    cauchy-series-species-subuniverse
      ( P)
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3  l4))
      ( cauchy-composition-species-subuniverse P Q C1 C2 S T)
      ( X) 
    composition-cauchy-series-species-subuniverse P Q S T X
  equiv-cauchy-series-composition-species-subuniverse =
    ( equiv-composition-cauchy-series-Σ-extension-species-subuniverse P Q S T
      ( X)) ∘e
    ( equiv-cauchy-series-composition-species-types
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l3)
        ( S))
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q l4)
        ( T))
      ( X)) ∘e
    ( equiv-cauchy-series-equiv-species-types
      ( Σ-extension-species-subuniverse
        ( P)
        ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3  l4))
        ( cauchy-composition-species-subuniverse P Q C1 C2 S T))
      ( cauchy-composition-species-types
        ( Σ-extension-species-subuniverse
          ( P)
          ( subuniverse-global-subuniverse Q l3)
          ( S))
        ( Σ-extension-species-subuniverse
          ( P)
          ( subuniverse-global-subuniverse Q l4)
          ( T)))
      ( preserves-cauchy-composition-Σ-extension-species-subuniverse
        ( P)
        ( Q)
        ( C1)
        ( C2)
        ( S)
        ( T))
      ( X)) ∘e
    ( equiv-cauchy-series-Σ-extension-species-subuniverse
      ( P)
      ( subuniverse-global-subuniverse Q (lsuc l1  l2  l3  l4))
      ( cauchy-composition-species-subuniverse P Q C1 C2 S T)
      ( X))

Recent changes