Locally constant maps in metric spaces

Content created by Fredrik Bakke and Louis Wasserman.

Created on 2026-01-01.
Last modified on 2026-01-01.

module metric-spaces.locally-constant-maps-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.equivalence-relations
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.functoriality-propositional-truncation
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.elements-at-bounded-distance-metric-spaces
open import metric-spaces.maps-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.short-maps-metric-spaces

Idea

A map between metric spaces is locally constant if elements at bounded distance have identical images. All locally constant maps are short.

Definitions

The property of being a locally constant map

module _
  {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : map-Metric-Space A B)
  where

  is-locally-constant-prop-map-Metric-Space : Prop (l1  l2  l1')
  is-locally-constant-prop-map-Metric-Space =
    Π-Prop
      ( type-Metric-Space A)
      ( λ x 
        Π-Prop
          ( type-Metric-Space A)
          ( λ y 
            bounded-dist-prop-Metric-Space A x y 
            Id-Prop
              ( set-Metric-Space B)
              ( f x)
              ( f y)))

  is-locally-constant-map-Metric-Space : UU (l1  l2  l1')
  is-locally-constant-map-Metric-Space =
    type-Prop is-locally-constant-prop-map-Metric-Space

  abstract
    is-prop-is-locally-constant-map-Metric-Space :
      is-prop is-locally-constant-map-Metric-Space
    is-prop-is-locally-constant-map-Metric-Space =
      is-prop-type-Prop is-locally-constant-prop-map-Metric-Space

Properties

Locally constant maps are short

module _
  {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : map-Metric-Space A B)
  where

  abstract
    is-short-map-is-locally-constant-map-Metric-Space :
      is-locally-constant-map-Metric-Space A B f 
      is-short-map-Metric-Space A B f
    is-short-map-is-locally-constant-map-Metric-Space H d x y Nxy =
      sim-eq-Metric-Space
        ( B)
        ( f x)
        ( f y)
        ( H x y (intro-exists d Nxy))
        ( d)

Recent changes