Tetrahedra in 3-dimensional space
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-07-02.
Last modified on 2025-10-31.
module finite-group-theory.tetrahedra-in-3-space where
Imports
open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.universe-levels open import univalent-combinatorics.2-element-decidable-subtypes open import univalent-combinatorics.cyclic-finite-types open import univalent-combinatorics.finite-types
Idea
The type of
tetrahedra in 3-dimensional space¶ is
a type of tetrahedra that can be rotated, but not reflected. In other words, the
symmetry group of the tetrahedra in
3-dimensional space is the
alternating group A₄.
Note that any rotation of a tetrahedron in 3-space induces a rotation on the set of opposing pairs of edges. There are three such pairs of edges.
Definition
tetrahedron-in-3-space : UU (lsuc lzero) tetrahedron-in-3-space = Σ ( Type-With-Cardinality-ℕ lzero 4) ( λ X → cyclic-structure 3 ( Σ ( 2-Element-Decidable-Subtype lzero ( 2-Element-Decidable-Subtype lzero ( type-Type-With-Cardinality-ℕ 4 X))) ( λ Q → (x : type-Type-With-Cardinality-ℕ 4 X) → is-empty ( (P : type-2-Element-Decidable-Subtype Q) → is-in-2-Element-Decidable-Subtype (pr1 P) ( x))))) module _ (T : tetrahedron-in-3-space) where vertex-tetrahedron-in-3-space : UU lzero vertex-tetrahedron-in-3-space = type-Type-With-Cardinality-ℕ 4 (pr1 T) cyclic-structure-tetrahedron-in-3-space : cyclic-structure 3 ( Σ ( 2-Element-Decidable-Subtype lzero ( 2-Element-Decidable-Subtype lzero ( vertex-tetrahedron-in-3-space))) ( λ Q → (x : vertex-tetrahedron-in-3-space) → is-empty ( (P : type-2-Element-Decidable-Subtype Q) → is-in-2-Element-Decidable-Subtype (pr1 P) ( x)))) cyclic-structure-tetrahedron-in-3-space = pr2 T
Recent changes
- 2025-10-31. Fredrik Bakke. chore: Concepts in
finite-group-theory(#1656). - 2025-02-14. Fredrik Bakke. Rename
UU-FintoType-With-Cardinality-ℕ(#1316). - 2023-10-09. Egbert Rijke. Navigation tables for all files related to cyclic types, groups, and rings (#823).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).