Convergent series in complete metric abelian groups
Content created by Louis Wasserman and Fredrik Bakke.
Created on 2025-12-03.
Last modified on 2026-01-07.
module analysis.convergent-series-complete-metric-abelian-groups where
Imports
open import analysis.complete-metric-abelian-groups open import analysis.convergent-series-metric-abelian-groups open import analysis.series-complete-metric-abelian-groups open import foundation.dependent-pair-types open import foundation.inhabited-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-sequences-complete-metric-spaces open import metric-spaces.cauchy-sequences-metric-spaces
Idea
A series converges in a complete metric abelian group if its partial sums form a Cauchy sequence.
A slightly modified converse is also true: if a series converges, there exists a modulus making it a Cauchy sequence.
Definition
module _ {l1 l2 : Level} (G : Complete-Metric-Ab l1 l2) (σ : series-Complete-Metric-Ab G) where is-sum-prop-series-Complete-Metric-Ab : type-Complete-Metric-Ab G → Prop l2 is-sum-prop-series-Complete-Metric-Ab = is-sum-prop-series-Metric-Ab σ is-sum-series-Complete-Metric-Ab : type-Complete-Metric-Ab G → UU l2 is-sum-series-Complete-Metric-Ab = is-sum-series-Metric-Ab σ is-convergent-prop-series-Complete-Metric-Ab : Prop (l1 ⊔ l2) is-convergent-prop-series-Complete-Metric-Ab = is-convergent-prop-series-Metric-Ab σ is-convergent-series-Complete-Metric-Ab : UU (l1 ⊔ l2) is-convergent-series-Complete-Metric-Ab = is-convergent-series-Metric-Ab σ convergent-series-Complete-Metric-Ab : {l1 l2 : Level} (G : Complete-Metric-Ab l1 l2) → UU (l1 ⊔ l2) convergent-series-Complete-Metric-Ab G = type-subtype (is-convergent-prop-series-Complete-Metric-Ab G)
Properties
If the partial sums of a series form a Cauchy sequence, the series converges
module _ {l1 l2 : Level} (G : Complete-Metric-Ab l1 l2) (σ : series-Complete-Metric-Ab G) where is-convergent-series-is-cauchy-sequence-partial-sum-series-Complete-Metric-Ab : is-cauchy-sequence-Metric-Space ( metric-space-Complete-Metric-Ab G) ( partial-sum-series-Complete-Metric-Ab G σ) → is-convergent-series-Complete-Metric-Ab G σ is-convergent-series-is-cauchy-sequence-partial-sum-series-Complete-Metric-Ab H = has-limit-cauchy-sequence-Complete-Metric-Space ( complete-metric-space-Complete-Metric-Ab G) ( partial-sum-series-Complete-Metric-Ab G σ , H)
If a series converges, its partial sums are a Cauchy sequence
module _ {l1 l2 : Level} (G : Complete-Metric-Ab l1 l2) (σ : series-Complete-Metric-Ab G) where abstract is-cauchy-sequence-partial-sum-series-is-convergent-series-Complete-Metric-Ab : is-convergent-series-Complete-Metric-Ab G σ → is-cauchy-sequence-Metric-Space ( metric-space-Complete-Metric-Ab G) ( partial-sum-series-Complete-Metric-Ab G σ) is-cauchy-sequence-partial-sum-series-is-convergent-series-Complete-Metric-Ab = is-cauchy-has-limit-sequence-Metric-Space ( metric-space-Complete-Metric-Ab G)
Recent changes
- 2026-01-07. Louis Wasserman and Fredrik Bakke. Refactor Cauchy sequences (#1768).
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).
- 2025-12-03. Louis Wasserman. Series in Banach spaces (#1710).