Dependent products of large categories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-09-28.
Last modified on 2024-03-11.
module category-theory.dependent-products-of-large-categories where
Imports
open import category-theory.dependent-products-of-large-precategories open import category-theory.isomorphisms-in-large-categories open import category-theory.large-categories open import category-theory.large-precategories open import foundation.equivalences open import foundation.function-extensionality open import foundation.functoriality-dependent-function-types open import foundation.identity-types open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Idea
Given a family of large categories Cᵢ
indexed by i : I
, the dependent product Π(i : I), Cᵢ
is a large category
consisting of functions taking i : I
to an object of Cᵢ
. Every component of
the structure is given pointwise.
Definition
module _ {l1 : Level} {α : Level → Level} {β : Level → Level → Level} (I : UU l1) (C : I → Large-Category α β) where large-precategory-Π-Large-Category : Large-Precategory (λ l2 → l1 ⊔ α l2) (λ l2 l3 → l1 ⊔ β l2 l3) large-precategory-Π-Large-Category = Π-Large-Precategory I (λ i → large-precategory-Large-Category (C i)) abstract is-large-category-Π-Large-Category : is-large-category-Large-Precategory large-precategory-Π-Large-Category is-large-category-Π-Large-Category x y = is-equiv-htpy-equiv ( ( equiv-iso-fiberwise-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i))) ∘e ( equiv-Π-equiv-family ( λ i → extensionality-obj-Large-Category (C i) (x i) (y i))) ∘e ( equiv-funext)) ( λ where refl → refl) Π-Large-Category : Large-Category (λ l2 → l1 ⊔ α l2) (λ l2 l3 → l1 ⊔ β l2 l3) large-precategory-Large-Category Π-Large-Category = large-precategory-Π-Large-Category is-large-category-Large-Category Π-Large-Category = is-large-category-Π-Large-Category obj-Π-Large-Category : (l2 : Level) → UU (l1 ⊔ α l2) obj-Π-Large-Category = obj-Large-Category Π-Large-Category hom-set-Π-Large-Category : {l2 l3 : Level} → obj-Π-Large-Category l2 → obj-Π-Large-Category l3 → Set (l1 ⊔ β l2 l3) hom-set-Π-Large-Category = hom-set-Large-Category Π-Large-Category hom-Π-Large-Category : {l2 l3 : Level} → obj-Π-Large-Category l2 → obj-Π-Large-Category l3 → UU (l1 ⊔ β l2 l3) hom-Π-Large-Category = hom-Large-Category Π-Large-Category comp-hom-Π-Large-Category : {l2 l3 l4 : Level} {x : obj-Π-Large-Category l2} {y : obj-Π-Large-Category l3} {z : obj-Π-Large-Category l4} → hom-Π-Large-Category y z → hom-Π-Large-Category x y → hom-Π-Large-Category x z comp-hom-Π-Large-Category = comp-hom-Large-Category Π-Large-Category associative-comp-hom-Π-Large-Category : {l2 l3 l4 l5 : Level} {x : obj-Π-Large-Category l2} {y : obj-Π-Large-Category l3} {z : obj-Π-Large-Category l4} {w : obj-Π-Large-Category l5} → (h : hom-Π-Large-Category z w) (g : hom-Π-Large-Category y z) (f : hom-Π-Large-Category x y) → comp-hom-Π-Large-Category (comp-hom-Π-Large-Category h g) f = comp-hom-Π-Large-Category h (comp-hom-Π-Large-Category g f) associative-comp-hom-Π-Large-Category = associative-comp-hom-Large-Category Π-Large-Category involutive-eq-associative-comp-hom-Π-Large-Category : {l2 l3 l4 l5 : Level} {x : obj-Π-Large-Category l2} {y : obj-Π-Large-Category l3} {z : obj-Π-Large-Category l4} {w : obj-Π-Large-Category l5} → (h : hom-Π-Large-Category z w) (g : hom-Π-Large-Category y z) (f : hom-Π-Large-Category x y) → comp-hom-Π-Large-Category (comp-hom-Π-Large-Category h g) f =ⁱ comp-hom-Π-Large-Category h (comp-hom-Π-Large-Category g f) involutive-eq-associative-comp-hom-Π-Large-Category = involutive-eq-associative-comp-hom-Large-Category Π-Large-Category id-hom-Π-Large-Category : {l2 : Level} {x : obj-Π-Large-Category l2} → hom-Π-Large-Category x x id-hom-Π-Large-Category = id-hom-Large-Category Π-Large-Category left-unit-law-comp-hom-Π-Large-Category : {l2 l3 : Level} {x : obj-Π-Large-Category l2} {y : obj-Π-Large-Category l3} (f : hom-Π-Large-Category x y) → comp-hom-Π-Large-Category id-hom-Π-Large-Category f = f left-unit-law-comp-hom-Π-Large-Category = left-unit-law-comp-hom-Large-Category Π-Large-Category right-unit-law-comp-hom-Π-Large-Category : {l2 l3 : Level} {x : obj-Π-Large-Category l2} {y : obj-Π-Large-Category l3} (f : hom-Π-Large-Category x y) → comp-hom-Π-Large-Category f id-hom-Π-Large-Category = f right-unit-law-comp-hom-Π-Large-Category = right-unit-law-comp-hom-Large-Category Π-Large-Category extensionality-obj-Π-Large-Category : {l2 : Level} (x y : obj-Π-Large-Category l2) → (x = y) ≃ iso-Large-Category Π-Large-Category x y extensionality-obj-Π-Large-Category = extensionality-obj-Large-Category Π-Large-Category
Properties
Isomorphisms in the large dependent product category are fiberwise isomorphisms
module _ {l1 l2 l3 : Level} {α : Level → Level} {β : Level → Level → Level} (I : UU l1) (C : I → Large-Category α β) {x : obj-Π-Large-Category I C l2} {y : obj-Π-Large-Category I C l3} where is-fiberwise-iso-is-iso-Π-Large-Category : (f : hom-Π-Large-Category I C x y) → is-iso-Large-Category (Π-Large-Category I C) f → (i : I) → is-iso-Large-Category (C i) (f i) is-fiberwise-iso-is-iso-Π-Large-Category = is-fiberwise-iso-is-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) fiberwise-iso-iso-Π-Large-Category : iso-Large-Category (Π-Large-Category I C) x y → (i : I) → iso-Large-Category (C i) (x i) (y i) fiberwise-iso-iso-Π-Large-Category = fiberwise-iso-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) is-iso-is-fiberwise-iso-Π-Large-Category : (f : hom-Π-Large-Category I C x y) → ((i : I) → is-iso-Large-Category (C i) (f i)) → is-iso-Large-Category (Π-Large-Category I C) f is-iso-is-fiberwise-iso-Π-Large-Category = is-iso-is-fiberwise-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) iso-fiberwise-iso-Π-Large-Category : ((i : I) → iso-Large-Category (C i) (x i) (y i)) → iso-Large-Category (Π-Large-Category I C) x y iso-fiberwise-iso-Π-Large-Category = iso-fiberwise-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) is-equiv-is-fiberwise-iso-is-iso-Π-Large-Category : (f : hom-Π-Large-Category I C x y) → is-equiv (is-fiberwise-iso-is-iso-Π-Large-Category f) is-equiv-is-fiberwise-iso-is-iso-Π-Large-Category = is-equiv-is-fiberwise-iso-is-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) equiv-is-fiberwise-iso-is-iso-Π-Large-Category : (f : hom-Π-Large-Category I C x y) → ( is-iso-Large-Category (Π-Large-Category I C) f) ≃ ( (i : I) → is-iso-Large-Category (C i) (f i)) equiv-is-fiberwise-iso-is-iso-Π-Large-Category = equiv-is-fiberwise-iso-is-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) is-equiv-is-iso-is-fiberwise-iso-Π-Large-Category : (f : hom-Π-Large-Category I C x y) → is-equiv (is-iso-is-fiberwise-iso-Π-Large-Category f) is-equiv-is-iso-is-fiberwise-iso-Π-Large-Category = is-equiv-is-iso-is-fiberwise-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) equiv-is-iso-is-fiberwise-iso-Π-Large-Category : ( f : hom-Π-Large-Category I C x y) → ( (i : I) → is-iso-Large-Category (C i) (f i)) ≃ ( is-iso-Large-Category (Π-Large-Category I C) f) equiv-is-iso-is-fiberwise-iso-Π-Large-Category = equiv-is-iso-is-fiberwise-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) is-equiv-fiberwise-iso-iso-Π-Large-Category : is-equiv fiberwise-iso-iso-Π-Large-Category is-equiv-fiberwise-iso-iso-Π-Large-Category = is-equiv-fiberwise-iso-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) equiv-fiberwise-iso-iso-Π-Large-Category : ( iso-Large-Category (Π-Large-Category I C) x y) ≃ ( (i : I) → iso-Large-Category (C i) (x i) (y i)) equiv-fiberwise-iso-iso-Π-Large-Category = equiv-fiberwise-iso-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) is-equiv-iso-fiberwise-iso-Π-Large-Category : is-equiv iso-fiberwise-iso-Π-Large-Category is-equiv-iso-fiberwise-iso-Π-Large-Category = is-equiv-iso-fiberwise-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i)) equiv-iso-fiberwise-iso-Π-Large-Category : ( (i : I) → iso-Large-Category (C i) (x i) (y i)) ≃ ( iso-Large-Category (Π-Large-Category I C) x y) equiv-iso-fiberwise-iso-Π-Large-Category = equiv-iso-fiberwise-iso-Π-Large-Precategory I ( λ i → large-precategory-Large-Category (C i))
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Refactor library to use
λ where
(#809). - 2023-09-28. Egbert Rijke and Fredrik Bakke. Cyclic types (#800).