Dependent products of commutative semirings
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-03-13.
Last modified on 2023-05-04.
module commutative-algebra.dependent-products-commutative-semirings where
Imports
open import commutative-algebra.commutative-semirings open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.dependent-products-commutative-monoids open import ring-theory.dependent-products-semirings open import ring-theory.semirings
Idea
Given a family of commutative semirings A i
indexed by i : I
, their
dependent product Π (i:I), A i
is again a commutative semiring.
Definition
module _ {l1 l2 : Level} (I : UU l1) (A : I → Commutative-Semiring l2) where semiring-Π-Commutative-Semiring : Semiring (l1 ⊔ l2) semiring-Π-Commutative-Semiring = Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) additive-commutative-monoid-Π-Commutative-Semiring : Commutative-Monoid (l1 ⊔ l2) additive-commutative-monoid-Π-Commutative-Semiring = Π-Commutative-Monoid I ( λ i → additive-commutative-monoid-Commutative-Semiring (A i)) multiplicative-commutative-monoid-Π-Commutative-Semiring : Commutative-Monoid (l1 ⊔ l2) multiplicative-commutative-monoid-Π-Commutative-Semiring = Π-Commutative-Monoid I ( λ i → multiplicative-commutative-monoid-Commutative-Semiring (A i)) set-Π-Commutative-Semiring : Set (l1 ⊔ l2) set-Π-Commutative-Semiring = set-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) type-Π-Commutative-Semiring : UU (l1 ⊔ l2) type-Π-Commutative-Semiring = type-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) is-set-type-Π-Commutative-Semiring : is-set type-Π-Commutative-Semiring is-set-type-Π-Commutative-Semiring = is-set-type-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) add-Π-Commutative-Semiring : type-Π-Commutative-Semiring → type-Π-Commutative-Semiring → type-Π-Commutative-Semiring add-Π-Commutative-Semiring = add-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) zero-Π-Commutative-Semiring : type-Π-Commutative-Semiring zero-Π-Commutative-Semiring = zero-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) associative-add-Π-Commutative-Semiring : (x y z : type-Π-Commutative-Semiring) → add-Π-Commutative-Semiring (add-Π-Commutative-Semiring x y) z = add-Π-Commutative-Semiring x (add-Π-Commutative-Semiring y z) associative-add-Π-Commutative-Semiring = associative-add-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) left-unit-law-add-Π-Commutative-Semiring : (x : type-Π-Commutative-Semiring) → add-Π-Commutative-Semiring zero-Π-Commutative-Semiring x = x left-unit-law-add-Π-Commutative-Semiring = left-unit-law-add-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) right-unit-law-add-Π-Commutative-Semiring : (x : type-Π-Commutative-Semiring) → add-Π-Commutative-Semiring x zero-Π-Commutative-Semiring = x right-unit-law-add-Π-Commutative-Semiring = right-unit-law-add-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) commutative-add-Π-Commutative-Semiring : (x y : type-Π-Commutative-Semiring) → add-Π-Commutative-Semiring x y = add-Π-Commutative-Semiring y x commutative-add-Π-Commutative-Semiring = commutative-add-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) mul-Π-Commutative-Semiring : type-Π-Commutative-Semiring → type-Π-Commutative-Semiring → type-Π-Commutative-Semiring mul-Π-Commutative-Semiring = mul-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) one-Π-Commutative-Semiring : type-Π-Commutative-Semiring one-Π-Commutative-Semiring = one-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) associative-mul-Π-Commutative-Semiring : (x y z : type-Π-Commutative-Semiring) → mul-Π-Commutative-Semiring (mul-Π-Commutative-Semiring x y) z = mul-Π-Commutative-Semiring x (mul-Π-Commutative-Semiring y z) associative-mul-Π-Commutative-Semiring = associative-mul-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) left-unit-law-mul-Π-Commutative-Semiring : (x : type-Π-Commutative-Semiring) → mul-Π-Commutative-Semiring one-Π-Commutative-Semiring x = x left-unit-law-mul-Π-Commutative-Semiring = left-unit-law-mul-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) right-unit-law-mul-Π-Commutative-Semiring : (x : type-Π-Commutative-Semiring) → mul-Π-Commutative-Semiring x one-Π-Commutative-Semiring = x right-unit-law-mul-Π-Commutative-Semiring = right-unit-law-mul-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) left-distributive-mul-add-Π-Commutative-Semiring : (f g h : type-Π-Commutative-Semiring) → mul-Π-Commutative-Semiring f (add-Π-Commutative-Semiring g h) = add-Π-Commutative-Semiring ( mul-Π-Commutative-Semiring f g) ( mul-Π-Commutative-Semiring f h) left-distributive-mul-add-Π-Commutative-Semiring = left-distributive-mul-add-Π-Semiring I ( λ i → semiring-Commutative-Semiring (A i)) right-distributive-mul-add-Π-Commutative-Semiring : (f g h : type-Π-Commutative-Semiring) → mul-Π-Commutative-Semiring (add-Π-Commutative-Semiring f g) h = add-Π-Commutative-Semiring ( mul-Π-Commutative-Semiring f h) ( mul-Π-Commutative-Semiring g h) right-distributive-mul-add-Π-Commutative-Semiring = right-distributive-mul-add-Π-Semiring I ( λ i → semiring-Commutative-Semiring (A i)) left-zero-law-mul-Π-Commutative-Semiring : (f : type-Π-Commutative-Semiring) → mul-Π-Commutative-Semiring zero-Π-Commutative-Semiring f = zero-Π-Commutative-Semiring left-zero-law-mul-Π-Commutative-Semiring = left-zero-law-mul-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) right-zero-law-mul-Π-Commutative-Semiring : (f : type-Π-Commutative-Semiring) → mul-Π-Commutative-Semiring f zero-Π-Commutative-Semiring = zero-Π-Commutative-Semiring right-zero-law-mul-Π-Commutative-Semiring = right-zero-law-mul-Π-Semiring I (λ i → semiring-Commutative-Semiring (A i)) commutative-mul-Π-Commutative-Semiring : (f g : type-Π-Commutative-Semiring) → mul-Π-Commutative-Semiring f g = mul-Π-Commutative-Semiring g f commutative-mul-Π-Commutative-Semiring = commutative-mul-Commutative-Monoid multiplicative-commutative-monoid-Π-Commutative-Semiring Π-Commutative-Semiring : Commutative-Semiring (l1 ⊔ l2) pr1 Π-Commutative-Semiring = semiring-Π-Commutative-Semiring pr2 Π-Commutative-Semiring = commutative-mul-Π-Commutative-Semiring
Recent changes
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-13. Egbert Rijke. Products of semigroups, monoids, commutative monoids, groups, abelian groups, semirings, rings, commutative semirings, and commutative rings (#505).