Uncountable sets
Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.
Created on 2022-05-13.
Last modified on 2024-09-23.
module set-theory.uncountable-sets where
Imports
open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import set-theory.countable-sets
Idea
A set X
is
uncountable¶
if X
is not empty and there is
no surjection
ℕ ↠ X
. In other words, if X
is not
countable.
Definition
is-uncountable-Prop : {l : Level} → Set l → Prop l is-uncountable-Prop X = neg-Prop (is-countable-Prop X) is-uncountable : {l : Level} → Set l → UU l is-uncountable X = type-Prop (is-uncountable-Prop X) is-prop-is-uncountable : {l : Level} (X : Set l) → is-prop (is-uncountable X) is-prop-is-uncountable X = is-prop-type-Prop (is-uncountable-Prop X)
External links
- Uncountable set at Mathswitch
- Uncountable set at Wikipedia
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490). - 2023-03-07. Jonathan Prieto-Cubides. Show module declarations (#488).