The dependent pullback property of pushouts
Content created by Fredrik Bakke, Egbert Rijke and Vojtěch Štěpančík.
Created on 2023-06-10.
Last modified on 2024-04-25.
module synthetic-homotopy-theory.dependent-pullback-property-pushouts where
Imports
open import foundation.action-on-identifications-dependent-functions open import foundation.action-on-identifications-functions open import foundation.cones-over-cospan-diagrams open import foundation.constant-type-families open import foundation.dependent-pair-types open import foundation.dependent-sums-pullbacks open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.precomposition-functions open import foundation.pullbacks open import foundation.transport-along-identifications open import foundation.type-theoretic-principle-of-choice open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import orthogonal-factorization-systems.lifts-families-of-elements open import orthogonal-factorization-systems.precomposition-lifts-families-of-elements open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.pullback-property-pushouts
Idea
The dependent pullback property of pushouts asserts that the type of sections of a type family over a pushout can be expressed as a pullback.
The fact that the dependent pullback property of pushouts is
logically equivalent to the
dependent universal property
of pushouts is shown in
dependent-universal-property-pushouts
.
Definition
cone-dependent-pullback-property-pushout : {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) (P : X → UU l5) → let i = pr1 c j = pr1 (pr2 c) H = pr2 (pr2 c) in cone ( λ (h : (a : A) → P (i a)) → λ (s : S) → tr P (H s) (h (f s))) ( λ (h : (b : B) → P (j b)) → λ s → h (g s)) ( (x : X) → P x) pr1 (cone-dependent-pullback-property-pushout f g (i , j , H) P) h a = h (i a) pr1 (pr2 (cone-dependent-pullback-property-pushout f g (i , j , H) P)) h b = h (j b) pr2 (pr2 (cone-dependent-pullback-property-pushout f g (i , j , H) P)) h = eq-htpy (λ s → apd h (H s)) dependent-pullback-property-pushout : {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) → UUω dependent-pullback-property-pushout {S = S} {A} {B} f g {X} (i , j , H) = {l : Level} (P : X → UU l) → is-pullback ( λ (h : (a : A) → P (i a)) → λ s → tr P (H s) (h (f s))) ( λ (h : (b : B) → P (j b)) → λ s → h (g s)) ( cone-dependent-pullback-property-pushout f g (i , j , H) P)
Properties
The dependent pullback property is logically equivalent to the pullback property
Consider a cocone
g
S -----> B
| |
f | | j
∨ ∨
A -----> X .
i
The nondependent pullback property follows from the dependent one by applying
the dependent pullback property to the constant type family λ _ → Y
.
module _ {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} (f : S → A) (g : S → B) {X : UU l4} (c : cocone f g X) where pullback-property-dependent-pullback-property-pushout : dependent-pullback-property-pushout f g c → pullback-property-pushout f g c pullback-property-dependent-pullback-property-pushout dpp-c Y = is-pullback-htpy ( λ h → eq-htpy ( λ s → inv ( tr-constant-type-family ( coherence-square-cocone f g c s) ( h (f s))))) ( refl-htpy) ( cone-dependent-pullback-property-pushout f g c (λ _ → Y)) ( ( refl-htpy) , ( refl-htpy) , ( λ h → ( right-unit) ∙ ( ap ( eq-htpy) ( eq-htpy ( λ s → left-transpose-eq-concat _ _ _ ( inv ( apd-constant-type-family h ( coherence-square-cocone f g c s))))) ∙ ( eq-htpy-concat-htpy _ _)))) ( dpp-c (λ _ → Y))
In the converse direction, we use the fact that by the type theoretic principle of choice, dependent functions distribute over Σ-types. That, and a handful of technical lemmas about transport in precomposed type families and precomposition in lifts of families of elements, allow us to construct the following commuting cube:
Σ (h : X → X) ((x : X) → P (h x))
/ | \
/ | \
/ | \
/ | \
/ | \
/ | \
/ | \
∨ ∨ ∨
Σ (h : A → X) ((a : A) → P (h a)) X → Σ (x : X) (P x) Σ (h : B → X) ((b : B) → P (h b))
|\ / \ /|
| \ / \ / |
| \ / \ / |
| \ / \ / |
| / \ / \ |
| / \ / \ |
| / \ / \ |
∨∨ ∨ ∨ ∨∨
A → Σ (x : X) (P x) Σ (h : S → X) ((s : S) → P (h s)) B → Σ (x : X) (P x)
\ | /
\ | /
\ | /
\ | /
\ | /
\ | /
\ | /
∨ ∨ ∨
S → Σ (x : X) (P x) .
The bottom square is the induced precomposition square for our fixed cocone, so
by the assumed pullback property, instantiated at the type Σ (x : X) (P x)
,
it's a pullback. The top square is constructed by precomposition of maps on the
first component, and by precomposition of lifts of families of elements on the
second component. Since vertical maps are equivalences, by the principle of
choice, and the bottom square is a pullback, we conclude that the top square is
a pullback.
Observe that restricting the top square to its first component, we again get the
induced precomposition square, this time instantiated at X
, so that is also a
pullback. Hence the top square is a pullback of total spaces over a pullback
square, which implies that we get a family of pullback squares of the fibers,
i.e. for every h : X → X
we have a pullback
(x : X) → P (h x) ---------> (b : B) → P (h (j b))
| ⌟ |
| |
| |
| |
∨ ∨
(a : A) → P (h (i a)) -----> (s : S) → P (h (j (g s))) ,
and instantiating for id : X → X
gives us exactly a proof of the dependent
pullback property.
cone-family-dependent-pullback-property : {l : Level} (P : X → UU l) → cone-family ( lift-family-of-elements P) ( precomp-lift-family-of-elements P f) ( precomp-lift-family-of-elements P g) ( cone-pullback-property-pushout f g c X) ( lift-family-of-elements P) pr1 (cone-family-dependent-pullback-property P γ) h = h ∘ horizontal-map-cocone f g c pr1 (pr2 (cone-family-dependent-pullback-property P γ)) h = h ∘ vertical-map-cocone f g c pr2 (pr2 (cone-family-dependent-pullback-property P γ)) = triangle-precomp-lift-family-of-elements-htpy P γ ( coherence-square-cocone f g c) is-pullback-cone-family-dependent-pullback-family : {l : Level} (P : X → UU l) → pullback-property-pushout f g c → (γ : X → X) → is-pullback ( ( tr ( lift-family-of-elements P) ( htpy-precomp (coherence-square-cocone f g c) X γ)) ∘ ( precomp-lift-family-of-elements P f ( γ ∘ horizontal-map-cocone f g c))) ( precomp-lift-family-of-elements P g ( γ ∘ vertical-map-cocone f g c)) ( cone-family-dependent-pullback-property P γ) is-pullback-cone-family-dependent-pullback-family P pp-c = is-pullback-family-is-pullback-tot ( lift-family-of-elements P) ( precomp-lift-family-of-elements P f) ( precomp-lift-family-of-elements P g) ( cone-pullback-property-pushout f g c X) ( cone-family-dependent-pullback-property P) ( pp-c X) ( is-pullback-top-is-pullback-bottom-cube-is-equiv ( precomp (horizontal-map-cocone f g c) (Σ X P)) ( precomp (vertical-map-cocone f g c) (Σ X P)) ( precomp f (Σ X P)) ( precomp g (Σ X P)) ( precomp-lifted-family-of-elements P (horizontal-map-cocone f g c)) ( precomp-lifted-family-of-elements P (vertical-map-cocone f g c)) ( precomp-lifted-family-of-elements P f) ( precomp-lifted-family-of-elements P g) ( map-inv-distributive-Π-Σ) ( map-inv-distributive-Π-Σ) ( map-inv-distributive-Π-Σ) ( map-inv-distributive-Π-Σ) ( htpy-precomp-lifted-family-of-elements P ( coherence-square-cocone f g c)) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( refl-htpy) ( htpy-precomp (coherence-square-cocone f g c) (Σ X P)) ( coherence-htpy-precomp-coherence-square-precomp-map-inv-distributive-Π-Σ ( P) ( coherence-square-cocone f g c)) ( is-equiv-map-inv-distributive-Π-Σ) ( is-equiv-map-inv-distributive-Π-Σ) ( is-equiv-map-inv-distributive-Π-Σ) ( is-equiv-map-inv-distributive-Π-Σ) ( pp-c (Σ X P))) dependent-pullback-property-pullback-property-pushout : pullback-property-pushout f g c → dependent-pullback-property-pushout f g c dependent-pullback-property-pullback-property-pushout pp-c P = is-pullback-htpy' ( ( tr-lift-family-of-elements-precomp P id ( coherence-square-cocone f g c)) ·r ( precomp-lift-family-of-elements P f (horizontal-map-cocone f g c))) ( refl-htpy) ( cone-family-dependent-pullback-property P id) { c' = cone-dependent-pullback-property-pushout f g c P} ( ( refl-htpy) , ( refl-htpy) , ( ( right-unit-htpy) ∙h ( coherence-triangle-precomp-lift-family-of-elements P id ( coherence-square-cocone f g c)))) ( is-pullback-cone-family-dependent-pullback-family P pp-c id)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-04-25. Fredrik Bakke. chore: Universal properties of colimits quantify over all universe levels (#1126).
- 2024-03-02. Fredrik Bakke. Factor out standard pullbacks (#1042).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).