The dependent pullback property of pushouts

Content created by Fredrik Bakke, Egbert Rijke and Vojtěch Štěpančík.

Created on 2023-06-10.
Last modified on 2024-04-25.

module synthetic-homotopy-theory.dependent-pullback-property-pushouts where
Imports
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.cones-over-cospan-diagrams
open import foundation.constant-type-families
open import foundation.dependent-pair-types
open import foundation.dependent-sums-pullbacks
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.precomposition-functions
open import foundation.pullbacks
open import foundation.transport-along-identifications
open import foundation.type-theoretic-principle-of-choice
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import orthogonal-factorization-systems.lifts-families-of-elements
open import orthogonal-factorization-systems.precomposition-lifts-families-of-elements

open import synthetic-homotopy-theory.cocones-under-spans
open import synthetic-homotopy-theory.pullback-property-pushouts

Idea

The dependent pullback property of pushouts asserts that the type of sections of a type family over a pushout can be expressed as a pullback.

The fact that the dependent pullback property of pushouts is logically equivalent to the dependent universal property of pushouts is shown in dependent-universal-property-pushouts.

Definition

cone-dependent-pullback-property-pushout :
  {l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
  (f : S  A) (g : S  B) {X : UU l4} (c : cocone f g X) (P : X  UU l5) 
  let i = pr1 c
      j = pr1 (pr2 c)
      H = pr2 (pr2 c)
  in
  cone
    ( λ (h : (a : A)  P (i a))  λ (s : S)  tr P (H s) (h (f s)))
    ( λ (h : (b : B)  P (j b))  λ s  h (g s))
    ( (x : X)  P x)
pr1 (cone-dependent-pullback-property-pushout f g (i , j , H) P) h a =
  h (i a)
pr1 (pr2 (cone-dependent-pullback-property-pushout f g (i , j , H) P)) h b =
  h (j b)
pr2 (pr2 (cone-dependent-pullback-property-pushout f g (i , j , H) P)) h =
  eq-htpy  s  apd h (H s))

dependent-pullback-property-pushout :
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
  (f : S  A) (g : S  B) {X : UU l4} (c : cocone f g X) 
  UUω
dependent-pullback-property-pushout {S = S} {A} {B} f g {X} (i , j , H) =
  {l : Level} (P : X  UU l) 
  is-pullback
    ( λ (h : (a : A)  P (i a))  λ s  tr P (H s) (h (f s)))
    ( λ (h : (b : B)  P (j b))  λ s  h (g s))
    ( cone-dependent-pullback-property-pushout f g (i , j , H) P)

Properties

The dependent pullback property is logically equivalent to the pullback property

Consider a cocone

        g
    S -----> B
    |        |
  f |        | j
    ∨        ∨
    A -----> X  .
        i

The nondependent pullback property follows from the dependent one by applying the dependent pullback property to the constant type family λ _ → Y.

module _
  {l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
  (f : S  A) (g : S  B) {X : UU l4} (c : cocone f g X)
  where

  pullback-property-dependent-pullback-property-pushout :
    dependent-pullback-property-pushout f g c 
    pullback-property-pushout f g c
  pullback-property-dependent-pullback-property-pushout dpp-c Y =
    is-pullback-htpy
      ( λ h 
        eq-htpy
          ( λ s 
            inv
              ( tr-constant-type-family
                ( coherence-square-cocone f g c s)
                ( h (f s)))))
      ( refl-htpy)
      ( cone-dependent-pullback-property-pushout f g c  _  Y))
      ( ( refl-htpy) ,
        ( refl-htpy) ,
        ( λ h 
          ( right-unit) 
          ( ap
            ( eq-htpy)
            ( eq-htpy
              ( λ s 
                left-transpose-eq-concat _ _ _
                  ( inv
                    ( apd-constant-type-family h
                      ( coherence-square-cocone f g c s))))) 
          ( eq-htpy-concat-htpy _ _))))
      ( dpp-c  _  Y))

In the converse direction, we use the fact that by the type theoretic principle of choice, dependent functions distribute over Σ-types. That, and a handful of technical lemmas about transport in precomposed type families and precomposition in lifts of families of elements, allow us to construct the following commuting cube:

                                Σ (h : X → X) ((x : X) → P (h x))
                                       /        |        \
                                     /          |          \
                                   /            |            \
                                 /              |              \
                               /                |                \
                             /                  |                  \
                           /                    |                    \
                         ∨                      ∨                      ∨
  Σ (h : A → X) ((a : A) → P (h a))    X → Σ (x : X) (P x)    Σ (h : B → X) ((b : B) → P (h b))
                         |\             /               \             /|
                         |  \         /                   \         /  |
                         |    \     /                       \     /    |
                         |      \ /                           \ /      |
                         |      / \                           / \      |
                         |    /     \                       /     \    |
                         |  /         \                   /         \  |
                         ∨∨             ∨               ∨             ∨∨
         A → Σ (x : X) (P x)    Σ (h : S → X) ((s : S) → P (h s))    B → Σ (x : X) (P x)
                           \                    |                    /
                             \                  |                  /
                               \                |                /
                                 \              |              /
                                   \            |            /
                                     \          |          /
                                       \        |        /
                                         ∨      ∨      ∨
                                       S → Σ (x : X) (P x) .

The bottom square is the induced precomposition square for our fixed cocone, so by the assumed pullback property, instantiated at the type Σ (x : X) (P x), it's a pullback. The top square is constructed by precomposition of maps on the first component, and by precomposition of lifts of families of elements on the second component. Since vertical maps are equivalences, by the principle of choice, and the bottom square is a pullback, we conclude that the top square is a pullback.

Observe that restricting the top square to its first component, we again get the induced precomposition square, this time instantiated at X, so that is also a pullback. Hence the top square is a pullback of total spaces over a pullback square, which implies that we get a family of pullback squares of the fibers, i.e. for every h : X → X we have a pullback

    (x : X) → P (h x) ---------> (b : B) → P (h (j b))
            | ⌟                           |
            |                             |
            |                             |
            |                             |
            ∨                             ∨
  (a : A) → P (h (i a)) -----> (s : S) → P (h (j (g s))) ,

and instantiating for id : X → X gives us exactly a proof of the dependent pullback property.

  cone-family-dependent-pullback-property :
    {l : Level} (P : X  UU l) 
    cone-family
      ( lift-family-of-elements P)
      ( precomp-lift-family-of-elements P f)
      ( precomp-lift-family-of-elements P g)
      ( cone-pullback-property-pushout f g c X)
      ( lift-family-of-elements P)
  pr1 (cone-family-dependent-pullback-property P γ) h =
    h  horizontal-map-cocone f g c
  pr1 (pr2 (cone-family-dependent-pullback-property P γ)) h =
    h  vertical-map-cocone f g c
  pr2 (pr2 (cone-family-dependent-pullback-property P γ)) =
    triangle-precomp-lift-family-of-elements-htpy P γ
      ( coherence-square-cocone f g c)

  is-pullback-cone-family-dependent-pullback-family :
    {l : Level} (P : X  UU l) 
    pullback-property-pushout f g c 
    (γ : X  X) 
    is-pullback
      ( ( tr
          ( lift-family-of-elements P)
          ( htpy-precomp (coherence-square-cocone f g c) X γ)) 
        ( precomp-lift-family-of-elements P f
          ( γ  horizontal-map-cocone f g c)))
      ( precomp-lift-family-of-elements P g
        ( γ  vertical-map-cocone f g c))
      ( cone-family-dependent-pullback-property P γ)
  is-pullback-cone-family-dependent-pullback-family P pp-c =
    is-pullback-family-is-pullback-tot
      ( lift-family-of-elements P)
      ( precomp-lift-family-of-elements P f)
      ( precomp-lift-family-of-elements P g)
      ( cone-pullback-property-pushout f g c X)
      ( cone-family-dependent-pullback-property P)
      ( pp-c X)
      ( is-pullback-top-is-pullback-bottom-cube-is-equiv
        ( precomp (horizontal-map-cocone f g c) (Σ X P))
        ( precomp (vertical-map-cocone f g c) (Σ X P))
        ( precomp f (Σ X P))
        ( precomp g (Σ X P))
        ( precomp-lifted-family-of-elements P (horizontal-map-cocone f g c))
        ( precomp-lifted-family-of-elements P (vertical-map-cocone f g c))
        ( precomp-lifted-family-of-elements P f)
        ( precomp-lifted-family-of-elements P g)
        ( map-inv-distributive-Π-Σ)
        ( map-inv-distributive-Π-Σ)
        ( map-inv-distributive-Π-Σ)
        ( map-inv-distributive-Π-Σ)
        ( htpy-precomp-lifted-family-of-elements P
          ( coherence-square-cocone f g c))
        ( refl-htpy)
        ( refl-htpy)
        ( refl-htpy)
        ( refl-htpy)
        ( htpy-precomp (coherence-square-cocone f g c) (Σ X P))
        ( coherence-htpy-precomp-coherence-square-precomp-map-inv-distributive-Π-Σ
          ( P)
          ( coherence-square-cocone f g c))
        ( is-equiv-map-inv-distributive-Π-Σ)
        ( is-equiv-map-inv-distributive-Π-Σ)
        ( is-equiv-map-inv-distributive-Π-Σ)
        ( is-equiv-map-inv-distributive-Π-Σ)
        ( pp-c (Σ X P)))

  dependent-pullback-property-pullback-property-pushout :
    pullback-property-pushout f g c 
    dependent-pullback-property-pushout f g c
  dependent-pullback-property-pullback-property-pushout pp-c P =
    is-pullback-htpy'
      ( ( tr-lift-family-of-elements-precomp P id
          ( coherence-square-cocone f g c)) ·r
        ( precomp-lift-family-of-elements P f (horizontal-map-cocone f g c)))
      ( refl-htpy)
      ( cone-family-dependent-pullback-property P id)
      { c' = cone-dependent-pullback-property-pushout f g c P}
      ( ( refl-htpy) ,
        ( refl-htpy) ,
        ( ( right-unit-htpy) ∙h
          ( coherence-triangle-precomp-lift-family-of-elements P id
            ( coherence-square-cocone f g c))))
      ( is-pullback-cone-family-dependent-pullback-family P pp-c id)

Recent changes