Scalar multiplication of linear maps between left modules over commutative rings

Content created by Louis Wasserman.

Created on 2026-01-30.
Last modified on 2026-01-30.

module linear-algebra.scalar-multiplication-linear-maps-left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings

open import foundation.dependent-pair-types
open import foundation.universe-levels

open import linear-algebra.left-modules-commutative-rings
open import linear-algebra.linear-endomaps-left-modules-commutative-rings
open import linear-algebra.linear-maps-left-modules-commutative-rings

Idea

Given a linear map f from a left module M over a commutative ring R to another left module N over R, and a constant c : R, the map x ↦ c * f x is a linear map.

Definition

The linear transformation of scalar multiplication

module _
  {l1 l2 : Level}
  (R : Commutative-Ring l1)
  (M : left-module-Commutative-Ring l2 R)
  (r : type-Commutative-Ring R)
  where

  is-linear-map-mul-left-module-Commutative-Ring :
    is-linear-endo-left-module-Commutative-Ring R M
      ( mul-left-module-Commutative-Ring R M r)
  is-linear-map-mul-left-module-Commutative-Ring =
    ( left-distributive-mul-add-left-module-Commutative-Ring R M r ,
      left-swap-mul-left-module-Commutative-Ring R M r)

  linear-endo-mul-left-module-Commutative-Ring :
    linear-endo-left-module-Commutative-Ring R M
  linear-endo-mul-left-module-Commutative-Ring =
    ( mul-left-module-Commutative-Ring R M r ,
      is-linear-map-mul-left-module-Commutative-Ring)

Scalar multiplication of linear maps

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (M : left-module-Commutative-Ring l2 R)
  (N : left-module-Commutative-Ring l3 R)
  (r : type-Commutative-Ring R)
  where

  mul-linear-map-left-module-Commutative-Ring :
    linear-map-left-module-Commutative-Ring R M N 
    linear-map-left-module-Commutative-Ring R M N
  mul-linear-map-left-module-Commutative-Ring =
    comp-linear-map-left-module-Commutative-Ring R M N N
      ( linear-endo-mul-left-module-Commutative-Ring R N r)

Recent changes