Scalar multiplication of linear maps between left modules over commutative rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.scalar-multiplication-linear-maps-left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.universe-levels open import linear-algebra.left-modules-commutative-rings open import linear-algebra.linear-endomaps-left-modules-commutative-rings open import linear-algebra.linear-maps-left-modules-commutative-rings
Idea
Given a
linear map f
from a left module M over
a commutative ring R to another
left module N over R, and a constant c : R, the map x ↦ c * f x is a
linear map.
Definition
The linear transformation of scalar multiplication
module _ {l1 l2 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (r : type-Commutative-Ring R) where is-linear-map-mul-left-module-Commutative-Ring : is-linear-endo-left-module-Commutative-Ring R M ( mul-left-module-Commutative-Ring R M r) is-linear-map-mul-left-module-Commutative-Ring = ( left-distributive-mul-add-left-module-Commutative-Ring R M r , left-swap-mul-left-module-Commutative-Ring R M r) linear-endo-mul-left-module-Commutative-Ring : linear-endo-left-module-Commutative-Ring R M linear-endo-mul-left-module-Commutative-Ring = ( mul-left-module-Commutative-Ring R M r , is-linear-map-mul-left-module-Commutative-Ring)
Scalar multiplication of linear maps
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (N : left-module-Commutative-Ring l3 R) (r : type-Commutative-Ring R) where mul-linear-map-left-module-Commutative-Ring : linear-map-left-module-Commutative-Ring R M N → linear-map-left-module-Commutative-Ring R M N mul-linear-map-left-module-Commutative-Ring = comp-linear-map-left-module-Commutative-Ring R M N N ( linear-endo-mul-left-module-Commutative-Ring R N r)
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).