The category of sets

Content created by Fredrik Bakke, Egbert Rijke, Julian KG, fernabnor and louismntnu.

Created on 2023-05-06.
Last modified on 2024-03-11.

module foundation.category-of-sets where
Imports
open import category-theory.categories
open import category-theory.isomorphisms-in-large-precategories
open import category-theory.large-categories
open import category-theory.large-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.isomorphisms-of-sets
open import foundation.sets
open import foundation.strictly-involutive-identity-types
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.identity-types

Idea

The category of sets consists of sets and functions. There is a category of sets for each universe level, and there is a large category of sets.

Definitions

The large precategory of sets

Set-Large-Precategory : Large-Precategory lsuc (_⊔_)
obj-Large-Precategory Set-Large-Precategory = Set
hom-set-Large-Precategory Set-Large-Precategory = hom-set-Set
comp-hom-Large-Precategory Set-Large-Precategory g f = g  f
id-hom-Large-Precategory Set-Large-Precategory = id
involutive-eq-associative-comp-hom-Large-Precategory Set-Large-Precategory
  h g f =
  reflⁱ
left-unit-law-comp-hom-Large-Precategory Set-Large-Precategory f = refl
right-unit-law-comp-hom-Large-Precategory Set-Large-Precategory f = refl

The large category of sets

id-iso-Set :
  {l : Level} {X : obj-Large-Precategory Set-Large-Precategory l} 
  iso-Large-Precategory Set-Large-Precategory X X
id-iso-Set {l} {X} = id-iso-Large-Precategory (Set-Large-Precategory) {l} {X}

iso-eq-Set :
  {l : Level} (X Y : obj-Large-Precategory Set-Large-Precategory l) 
  X  Y  iso-Large-Precategory Set-Large-Precategory X Y
iso-eq-Set = iso-eq-Large-Precategory Set-Large-Precategory

is-large-category-Set-Large-Precategory :
  is-large-category-Large-Precategory Set-Large-Precategory
is-large-category-Set-Large-Precategory {l} X =
  fundamental-theorem-id
    ( is-contr-equiv'
      ( Σ (Set l) (equiv-Set X))
      ( equiv-tot (equiv-iso-equiv-Set X))
      ( is-torsorial-equiv-Set X))
    ( iso-eq-Set X)

Set-Large-Category : Large-Category lsuc (_⊔_)
large-precategory-Large-Category Set-Large-Category = Set-Large-Precategory
is-large-category-Large-Category Set-Large-Category =
  is-large-category-Set-Large-Precategory

The precategory of small sets

Set-Precategory : (l : Level)  Precategory (lsuc l) l
Set-Precategory = precategory-Large-Precategory Set-Large-Precategory

The category of small sets

The precategory of sets and functions in a given universe is a category.

Set-Category : (l : Level)  Category (lsuc l) l
Set-Category = category-Large-Category Set-Large-Category

is-category-Set-Precategory :
  (l : Level)  is-category-Precategory (Set-Precategory l)
is-category-Set-Precategory l =
  is-category-Category (Set-Category l)

Comments

Since sets are equivalent to their set-truncations, the category of sets forms a full subprecategory of the homotopy precategory of types.

See also

Recent changes