Coproducts in precategories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-09-13.
Last modified on 2024-04-11.
module category-theory.coproducts-in-precategories where
Imports
open import category-theory.precategories open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.iterated-dependent-product-types open import foundation.propositions open import foundation.uniqueness-quantification open import foundation.universe-levels
Idea
We manually dualize the definition of products in precategories for convenience. See the documentation in that file for further information.
module _ {l1 l2 : Level} (C : Precategory l1 l2) where is-coproduct-obj-Precategory : (x y p : obj-Precategory C) → hom-Precategory C x p → hom-Precategory C y p → UU (l1 ⊔ l2) is-coproduct-obj-Precategory x y p l r = (z : obj-Precategory C) (f : hom-Precategory C x z) → (g : hom-Precategory C y z) → uniquely-exists-structure ( hom-Precategory C p z) ( λ h → ( comp-hom-Precategory C h l = f) × ( comp-hom-Precategory C h r = g)) coproduct-obj-Precategory : obj-Precategory C → obj-Precategory C → UU (l1 ⊔ l2) coproduct-obj-Precategory x y = Σ ( obj-Precategory C) ( λ p → Σ ( hom-Precategory C x p) ( λ l → Σ (hom-Precategory C y p) ( is-coproduct-obj-Precategory x y p l))) has-all-binary-coproducts : UU (l1 ⊔ l2) has-all-binary-coproducts = (x y : obj-Precategory C) → coproduct-obj-Precategory x y module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-binary-coproducts C) where object-coproduct-obj-Precategory : obj-Precategory C → obj-Precategory C → obj-Precategory C object-coproduct-obj-Precategory x y = pr1 (t x y) inl-coproduct-obj-Precategory : (x y : obj-Precategory C) → hom-Precategory C x (object-coproduct-obj-Precategory x y) inl-coproduct-obj-Precategory x y = pr1 (pr2 (t x y)) inr-coproduct-obj-Precategory : (x y : obj-Precategory C) → hom-Precategory C y (object-coproduct-obj-Precategory x y) inr-coproduct-obj-Precategory x y = pr1 (pr2 (pr2 (t x y))) module _ (x y z : obj-Precategory C) (f : hom-Precategory C x z) (g : hom-Precategory C y z) where morphism-out-of-coproduct-obj-Precategory : hom-Precategory C (object-coproduct-obj-Precategory x y) z morphism-out-of-coproduct-obj-Precategory = pr1 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g)) morphism-out-of-coproduct-obj-Precategory-comm-inl : comp-hom-Precategory ( C) ( morphism-out-of-coproduct-obj-Precategory) ( inl-coproduct-obj-Precategory x y) = f morphism-out-of-coproduct-obj-Precategory-comm-inl = pr1 (pr2 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g))) morphism-out-of-coproduct-obj-Precategory-comm-inr : comp-hom-Precategory ( C) ( morphism-out-of-coproduct-obj-Precategory) ( inr-coproduct-obj-Precategory x y) = g morphism-out-of-coproduct-obj-Precategory-comm-inr = pr2 (pr2 (pr1 (pr2 (pr2 (pr2 (t x y))) z f g))) is-unique-morphism-out-of-coproduct-obj-Precategory : (h : hom-Precategory C (object-coproduct-obj-Precategory x y) z) → comp-hom-Precategory C h (inl-coproduct-obj-Precategory x y) = f → comp-hom-Precategory C h (inr-coproduct-obj-Precategory x y) = g → morphism-out-of-coproduct-obj-Precategory = h is-unique-morphism-out-of-coproduct-obj-Precategory h comm1 comm2 = ap pr1 ((pr2 (pr2 (pr2 (pr2 (t x y))) z f g)) (h , (comm1 , comm2))) module _ {l1 l2 : Level} (C : Precategory l1 l2) (x y p : obj-Precategory C) (l : hom-Precategory C x p) (r : hom-Precategory C y p) where is-prop-is-coproduct-obj-Precategory : is-prop (is-coproduct-obj-Precategory C x y p l r) is-prop-is-coproduct-obj-Precategory = is-prop-iterated-Π 3 (λ z f g → is-property-is-contr) is-coproduct-prop-Precategory : Prop (l1 ⊔ l2) pr1 is-coproduct-prop-Precategory = is-coproduct-obj-Precategory C x y p l r pr2 is-coproduct-prop-Precategory = is-prop-is-coproduct-obj-Precategory
Properties
Coproducts of morphisms
If C
has all binary coproducts then for any pair of morphisms f : hom x₁ y₁
and g : hom x₂ y₂
we can construct a morphism
f + g : hom (x₁ + x₂) (y₁ + y₂)
.
module _ {l1 l2 : Level} (C : Precategory l1 l2) (t : has-all-binary-coproducts C) {x₁ x₂ y₁ y₂ : obj-Precategory C} (f : hom-Precategory C x₁ y₁) (g : hom-Precategory C x₂ y₂) where map-coproduct-obj-Precategory : hom-Precategory C (object-coproduct-obj-Precategory C t x₁ x₂) (object-coproduct-obj-Precategory C t y₁ y₂) map-coproduct-obj-Precategory = morphism-out-of-coproduct-obj-Precategory C t _ _ _ (comp-hom-Precategory C (inl-coproduct-obj-Precategory C t y₁ y₂) f) (comp-hom-Precategory C (inr-coproduct-obj-Precategory C t y₁ y₂) g)
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).