The inclusion of isometries into the category of metric spaces and short maps

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.functor-category-short-isometry-metric-spaces where
Imports
open import category-theory.conservative-functors-precategories
open import category-theory.faithful-functors-precategories
open import category-theory.functors-precategories
open import category-theory.isomorphisms-in-precategories
open import category-theory.maps-precategories
open import category-theory.precategories
open import category-theory.split-essentially-surjective-functors-precategories

open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

open import metric-spaces.isometries-metric-spaces
open import metric-spaces.precategory-of-metric-spaces-and-isometries
open import metric-spaces.precategory-of-metric-spaces-and-short-functions
open import metric-spaces.short-functions-metric-spaces

Idea

Because every isometry between metric spaces is also short, there’s a functor between the category of metric spaces and isometries to the category of metric spaces and short maps.

Since this functor is the identity on objects, it is an equivalence on objects. Moreover, since the map from isometry to short maps is an embedding, this functor is faithful. Finally, because short isomorphisms are isometries, this functor is also conservative.

Definition

The functor between the category of metric spaces and isometries to the category of metric spaces and short maps

module _
  (l1 l2 : Level)
  where

  functor-short-isometry-Metric-Space :
    functor-Precategory
      (precategory-isometry-Metric-Space {l1} {l2})
      (precategory-short-function-Metric-Space {l1} {l2})
  pr1 functor-short-isometry-Metric-Space A = A
  pr2 functor-short-isometry-Metric-Space =
    ( λ {A B}  short-isometry-Metric-Space A B) ,
    ( ( λ g f  refl) , ( λ A  refl))

Properties

The functor from isometries to short maps is an equivalence on objects

module _
  (l1 l2 : Level)
  where

  is-equiv-obj-functor-short-isometry-Metric-Space :
    is-equiv
      ( obj-functor-Precategory
        ( precategory-isometry-Metric-Space)
        ( precategory-short-function-Metric-Space)
        ( functor-short-isometry-Metric-Space l1 l2))
  is-equiv-obj-functor-short-isometry-Metric-Space = is-equiv-id

The functor from isometries to short maps is faithful

module _
  (l1 l2 : Level)
  where

  is-faithful-functor-short-isometry-Metric-Space :
    is-faithful-functor-Precategory
      (precategory-isometry-Metric-Space)
      (precategory-short-function-Metric-Space)
      (functor-short-isometry-Metric-Space l1 l2)
  is-faithful-functor-short-isometry-Metric-Space =
    is-emb-short-isometry-Metric-Space

The functor from isometries to short maps is conservative

module _
  (l1 l2 : Level)
  where

  is-conservative-functor-short-isometry-Metric-Space :
    is-conservative-functor-Precategory
      (precategory-isometry-Metric-Space)
      (precategory-short-function-Metric-Space)
      (functor-short-isometry-Metric-Space l1 l2)
  is-conservative-functor-short-isometry-Metric-Space {A} {B} f H =
    is-iso-is-equiv-isometry-Metric-Space
      ( A)
      ( B)
      ( f)
      ( is-equiv-is-iso-short-function-Metric-Space
        ( A)
        ( B)
        ( short-isometry-Metric-Space A B f)
        ( H))

Recent changes