The inclusion of isometries into the category of metric spaces and short maps
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.functor-category-short-isometry-metric-spaces where
Imports
open import category-theory.conservative-functors-precategories open import category-theory.faithful-functors-precategories open import category-theory.functors-precategories open import category-theory.isomorphisms-in-precategories open import category-theory.maps-precategories open import category-theory.precategories open import category-theory.split-essentially-surjective-functors-precategories open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import metric-spaces.isometries-metric-spaces open import metric-spaces.precategory-of-metric-spaces-and-isometries open import metric-spaces.precategory-of-metric-spaces-and-short-functions open import metric-spaces.short-functions-metric-spaces
Idea
Because every isometry between metric spaces is also short, there’s a functor between the category of metric spaces and isometries to the category of metric spaces and short maps.
Since this functor is the identity on objects, it is an equivalence on objects. Moreover, since the map from isometry to short maps is an embedding, this functor is faithful. Finally, because short isomorphisms are isometries, this functor is also conservative.
Definition
The functor between the category of metric spaces and isometries to the category of metric spaces and short maps
module _ (l1 l2 : Level) where functor-short-isometry-Metric-Space : functor-Precategory (precategory-isometry-Metric-Space {l1} {l2}) (precategory-short-function-Metric-Space {l1} {l2}) pr1 functor-short-isometry-Metric-Space A = A pr2 functor-short-isometry-Metric-Space = ( λ {A B} → short-isometry-Metric-Space A B) , ( ( λ g f → refl) , ( λ A → refl))
Properties
The functor from isometries to short maps is an equivalence on objects
module _ (l1 l2 : Level) where is-equiv-obj-functor-short-isometry-Metric-Space : is-equiv ( obj-functor-Precategory ( precategory-isometry-Metric-Space) ( precategory-short-function-Metric-Space) ( functor-short-isometry-Metric-Space l1 l2)) is-equiv-obj-functor-short-isometry-Metric-Space = is-equiv-id
The functor from isometries to short maps is faithful
module _ (l1 l2 : Level) where is-faithful-functor-short-isometry-Metric-Space : is-faithful-functor-Precategory (precategory-isometry-Metric-Space) (precategory-short-function-Metric-Space) (functor-short-isometry-Metric-Space l1 l2) is-faithful-functor-short-isometry-Metric-Space = is-emb-short-isometry-Metric-Space
The functor from isometries to short maps is conservative
module _ (l1 l2 : Level) where is-conservative-functor-short-isometry-Metric-Space : is-conservative-functor-Precategory (precategory-isometry-Metric-Space) (precategory-short-function-Metric-Space) (functor-short-isometry-Metric-Space l1 l2) is-conservative-functor-short-isometry-Metric-Space {A} {B} f H = is-iso-is-equiv-isometry-Metric-Space ( A) ( B) ( f) ( is-equiv-is-iso-short-function-Metric-Space ( A) ( B) ( short-isometry-Metric-Space A B f) ( H))
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).