The precategory of semigroups
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-17.
Last modified on 2024-03-11.
module group-theory.precategory-of-semigroups where
Imports
open import category-theory.large-precategories open import foundation.universe-levels open import group-theory.homomorphisms-semigroups open import group-theory.semigroups
Idea
Semigroups and semigroup homomorphisms form a precategory.
Definition
The large precategory of semigroups
Semigroup-Large-Precategory : Large-Precategory lsuc (_⊔_) Semigroup-Large-Precategory = make-Large-Precategory ( Semigroup) ( hom-set-Semigroup) ( λ {l1} {l2} {l3} {G} {H} {K} → comp-hom-Semigroup G H K) ( λ {l} {G} → id-hom-Semigroup G) ( λ {l1} {l2} {l3} {l4} {G} {H} {K} {L} → associative-comp-hom-Semigroup G H K L) ( λ {l1} {l2} {G} {H} → left-unit-law-comp-hom-Semigroup G H) ( λ {l1} {l2} {G} {H} → right-unit-law-comp-hom-Semigroup G H)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-05-06. Egbert Rijke. Big cleanup continued (#597).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).