Bilinear maps on left modules over rings
Content created by Louis Wasserman.
Created on 2026-02-13.
Last modified on 2026-02-13.
module linear-algebra.bilinear-maps-left-modules-rings where
Imports
open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.left-modules-rings open import linear-algebra.linear-maps-left-modules-rings open import ring-theory.rings
Idea
A
bilinear map¶
from two left modules X and Y over a
ring R to a third module Z is a map f : X → Y → Z
which is linear in each
argument.
Definition
module _ {l1 l2 l3 l4 : Level} (R : Ring l1) (X : left-module-Ring l2 R) (Y : left-module-Ring l3 R) (Z : left-module-Ring l4 R) (f : type-left-module-Ring R X → type-left-module-Ring R Y → type-left-module-Ring R Z) where is-linear-on-left-prop-binary-map-left-module-Ring : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-linear-on-left-prop-binary-map-left-module-Ring = Π-Prop ( type-left-module-Ring R Y) ( λ y → is-linear-map-prop-left-module-Ring R X Z (λ x → f x y)) is-linear-on-left-binary-map-left-module-Ring : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-linear-on-left-binary-map-left-module-Ring = type-Prop is-linear-on-left-prop-binary-map-left-module-Ring is-linear-on-right-prop-binary-map-left-module-Ring : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-linear-on-right-prop-binary-map-left-module-Ring = Π-Prop ( type-left-module-Ring R X) ( λ x → is-linear-map-prop-left-module-Ring R Y Z (f x)) is-linear-on-right-binary-map-left-module-Ring : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-linear-on-right-binary-map-left-module-Ring = type-Prop is-linear-on-right-prop-binary-map-left-module-Ring is-bilinear-map-prop-left-module-Ring : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-bilinear-map-prop-left-module-Ring = is-linear-on-left-prop-binary-map-left-module-Ring ∧ is-linear-on-right-prop-binary-map-left-module-Ring is-bilinear-map-left-module-Ring : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-bilinear-map-left-module-Ring = type-Prop is-bilinear-map-prop-left-module-Ring bilinear-map-left-module-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) → left-module-Ring l2 R → left-module-Ring l3 R → left-module-Ring l4 R → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) bilinear-map-left-module-Ring R X Y Z = type-subtype (is-bilinear-map-prop-left-module-Ring R X Y Z)
Properties
module _ {l1 l2 l3 l4 : Level} (R : Ring l1) (X : left-module-Ring l2 R) (Y : left-module-Ring l3 R) (Z : left-module-Ring l4 R) (f : bilinear-map-left-module-Ring R X Y Z) where map-bilinear-map-left-module-Ring : type-left-module-Ring R X → type-left-module-Ring R Y → type-left-module-Ring R Z map-bilinear-map-left-module-Ring = pr1 f
Linear maps from bilinear maps
module _ {l1 l2 l3 l4 : Level} (R : Ring l1) (X : left-module-Ring l2 R) (Y : left-module-Ring l3 R) (Z : left-module-Ring l4 R) (f : bilinear-map-left-module-Ring R X Y Z) where linear-map-ev-right-bilinear-map-left-module-Ring : (y : type-left-module-Ring R Y) → linear-map-left-module-Ring R X Z linear-map-ev-right-bilinear-map-left-module-Ring y = ( ( λ x → map-bilinear-map-left-module-Ring R X Y Z f x y) , pr1 (pr2 f) y) linear-map-ev-left-bilinear-map-left-module-Ring : (x : type-left-module-Ring R X) → linear-map-left-module-Ring R Y Z linear-map-ev-left-bilinear-map-left-module-Ring x = ( map-bilinear-map-left-module-Ring R X Y Z f x , pr2 (pr2 f) x)
Zero laws of bilinear maps
module _ {l1 l2 l3 l4 : Level} (R : Ring l1) (X : left-module-Ring l2 R) (Y : left-module-Ring l3 R) (Z : left-module-Ring l4 R) (f : bilinear-map-left-module-Ring R X Y Z) where abstract left-zero-law-bilinear-map-left-module-Ring : (y : type-left-module-Ring R Y) → map-bilinear-map-left-module-Ring R X Y Z f ( zero-left-module-Ring R X) ( y) = zero-left-module-Ring R Z left-zero-law-bilinear-map-left-module-Ring y = is-zero-map-zero-linear-map-left-module-Ring R X Z ( linear-map-ev-right-bilinear-map-left-module-Ring R X Y Z f y) right-zero-law-bilinear-map-left-module-Ring : (x : type-left-module-Ring R X) → map-bilinear-map-left-module-Ring R X Y Z f ( x) ( zero-left-module-Ring R Y) = zero-left-module-Ring R Z right-zero-law-bilinear-map-left-module-Ring x = is-zero-map-zero-linear-map-left-module-Ring R Y Z ( linear-map-ev-left-bilinear-map-left-module-Ring R X Y Z f x)
See also
Recent changes
- 2026-02-13. Louis Wasserman. Algebras over commutative rings (#1780).