Quotients of finite types
Content created by Egbert Rijke, Jonathan Prieto-Cubides and Fredrik Bakke.
Created on 2022-06-23.
Last modified on 2023-11-24.
module univalent-combinatorics.quotients-finite-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import univalent-combinatorics.decidable-equivalence-relations open import univalent-combinatorics.decidable-subtypes open import univalent-combinatorics.finite-types open import univalent-combinatorics.image-of-maps
Idea
The quotient of a finite type by a decidable equivalence relation is again a finite type. In this file we set up some infrastructure for such quotients.
Definition
module _ {l1 l2 : Level} (X : 𝔽 l1) (R : Decidable-equivalence-relation-𝔽 l2 X) where equivalence-class-Decidable-equivalence-relation-𝔽 : UU (l1 ⊔ lsuc l2) equivalence-class-Decidable-equivalence-relation-𝔽 = im (decidable-relation-Decidable-equivalence-relation-𝔽 X R) is-finite-equivalence-class-Decidable-equivalence-relation-𝔽' : is-finite equivalence-class-Decidable-equivalence-relation-𝔽 is-finite-equivalence-class-Decidable-equivalence-relation-𝔽' = is-finite-im ( is-finite-type-𝔽 X) ( has-decidable-equality-Subset-𝔽 X) quotient-𝔽 : 𝔽 (l1 ⊔ lsuc l2) pr1 quotient-𝔽 = equivalence-class-Decidable-equivalence-relation-𝔽 pr2 quotient-𝔽 = is-finite-equivalence-class-Decidable-equivalence-relation-𝔽'
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).