Quotients of finite types
Content created by Egbert Rijke, Jonathan Prieto-Cubides and Fredrik Bakke.
Created on 2022-06-23.
Last modified on 2025-02-11.
module univalent-combinatorics.quotients-finite-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import univalent-combinatorics.decidable-equivalence-relations open import univalent-combinatorics.decidable-subtypes open import univalent-combinatorics.finite-types open import univalent-combinatorics.image-of-maps
Idea
The quotient of a finite type by a decidable equivalence relation is again a finite type. In this file we set up some infrastructure for such quotients.
Definition
module _ {l1 l2 : Level} (X : Finite-Type l1) (R : type-Decidable-Equivalence-Relation-Finite-Type l2 X) where equivalence-class-Decidable-Equivalence-Relation-Finite-Type : UU (l1 ⊔ lsuc l2) equivalence-class-Decidable-Equivalence-Relation-Finite-Type = im (decidable-relation-Decidable-Equivalence-Relation-Finite-Type X R) is-finite-equivalence-class-Decidable-Equivalence-Relation-Finite-Type' : is-finite equivalence-class-Decidable-Equivalence-Relation-Finite-Type is-finite-equivalence-class-Decidable-Equivalence-Relation-Finite-Type' = is-finite-im ( is-finite-type-Finite-Type X) ( has-decidable-equality-Subset-Finite-Type X) quotient-Finite-Type : Finite-Type (l1 ⊔ lsuc l2) pr1 quotient-Finite-Type = equivalence-class-Decidable-Equivalence-Relation-Finite-Type pr2 quotient-Finite-Type = is-finite-equivalence-class-Decidable-Equivalence-Relation-Finite-Type'
Recent changes
- 2025-02-11. Fredrik Bakke. Switch from
𝔽
toFinite-*
(#1312). - 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497).