Elements at bounded distance in metric spaces
Content created by malarbol.
Created on 2025-05-19.
Last modified on 2025-05-19.
module metric-spaces.elements-at-bounded-distance-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.equivalence-relations open import foundation.existential-quantification open import foundation.function-types open import foundation.functoriality-propositional-truncation open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import logic.functoriality-existential-quantification open import metric-spaces.metric-spaces open import order-theory.preorders
Idea
Two elements x y : A
of a metric space are
at bounded distance¶
if there exists some
positive rational number
δ : ℚ⁺
such that x
and y
share a δ
-neighborhood in A
. Being at bounded
distance in a metric space is an
equivalence relation.
Definitions
The relation of being at bounded distance in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (x y : type-Metric-Space A) where bounded-dist-prop-Metric-Space : Prop l2 bounded-dist-prop-Metric-Space = ∃ ℚ⁺ (λ d → structure-Metric-Space A d x y) bounded-dist-Metric-Space : UU l2 bounded-dist-Metric-Space = type-Prop bounded-dist-prop-Metric-Space is-prop-bounded-dist-Metric-Space : is-prop bounded-dist-Metric-Space is-prop-bounded-dist-Metric-Space = is-prop-type-Prop bounded-dist-prop-Metric-Space
Elements at bounded distance relative to a given element in metric spaces
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (x : type-Metric-Space A) where element-at-bounded-dist-Metric-Space : UU (l1 ⊔ l2) element-at-bounded-dist-Metric-Space = type-subtype (bounded-dist-prop-Metric-Space A x) value-element-at-bounded-dist-Metric-Space : element-at-bounded-dist-Metric-Space → type-Metric-Space A value-element-at-bounded-dist-Metric-Space = pr1 bounded-dist-value-element-at-bounded-dist-Metric-Space : (H : element-at-bounded-dist-Metric-Space) → bounded-dist-Metric-Space ( A) ( x) ( value-element-at-bounded-dist-Metric-Space H) bounded-dist-value-element-at-bounded-dist-Metric-Space = pr2
Properties
Being at bounded distance in a metric space is reflexive
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where refl-bounded-dist-Metric-Space : (x : type-Metric-Space A) → bounded-dist-Metric-Space A x x refl-bounded-dist-Metric-Space x = map-trunc-Prop ( λ d → d , refl-structure-Metric-Space A d x) ( is-inhabited-ℚ⁺)
Being at bounded distance in a metric space is symmetric
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where symmetric-bounded-dist-Metric-Space : (x y : type-Metric-Space A) → bounded-dist-Metric-Space A x y → bounded-dist-Metric-Space A y x symmetric-bounded-dist-Metric-Space x y = map-tot-exists ( λ d → is-symmetric-structure-Metric-Space A d x y)
Being at bounded distance in a metric space is transitive
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where transitive-bounded-dist-Metric : (x y z : type-Metric-Space A) → bounded-dist-Metric-Space A y z → bounded-dist-Metric-Space A x y → bounded-dist-Metric-Space A x z transitive-bounded-dist-Metric x y z = map-binary-exists ( is-upper-bound-dist-Metric-Space A x z) ( λ dyz dxy → dxy +ℚ⁺ dyz) ( λ dyz dxy → is-triangular-structure-Metric-Space A x y z dxy dyz)
The preorder of elements at bounded distance in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where preorder-bounded-dist-Metric-Space : Preorder l1 l2 preorder-bounded-dist-Metric-Space = ( type-Metric-Space A) , ( bounded-dist-prop-Metric-Space A) , ( refl-bounded-dist-Metric-Space A) , ( transitive-bounded-dist-Metric A)
Being at bounded distance in a metric space is an equivalence relation
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-equivalence-relation-bounded-dist-Metric-Space : is-equivalence-relation (bounded-dist-prop-Metric-Space A) is-equivalence-relation-bounded-dist-Metric-Space = ( refl-bounded-dist-Metric-Space A) , ( symmetric-bounded-dist-Metric-Space A) , ( transitive-bounded-dist-Metric A) equivalence-relation-bounded-dist-Metric-Space : equivalence-relation l2 (type-Metric-Space A) equivalence-relation-bounded-dist-Metric-Space = ( bounded-dist-prop-Metric-Space A) , ( refl-bounded-dist-Metric-Space A) , ( symmetric-bounded-dist-Metric-Space A) , ( transitive-bounded-dist-Metric A)
Recent changes
- 2025-05-19. malarbol. Lipschitz-continuous functions between metric spaces (#1417).