Elements at bounded distance in metric spaces

Content created by malarbol.

Created on 2025-05-19.
Last modified on 2025-05-19.

module metric-spaces.elements-at-bounded-distance-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.equivalence-relations
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.functoriality-propositional-truncation
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import logic.functoriality-existential-quantification

open import metric-spaces.metric-spaces

open import order-theory.preorders

Idea

Two elements x y : A of a metric space are at bounded distance if there exists some positive rational number δ : ℚ⁺ such that x and y share a δ-neighborhood in A. Being at bounded distance in a metric space is an equivalence relation.

Definitions

The relation of being at bounded distance in a metric space

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  (x y : type-Metric-Space A)
  where

  bounded-dist-prop-Metric-Space : Prop l2
  bounded-dist-prop-Metric-Space =
     ℚ⁺  d  structure-Metric-Space A d x y)

  bounded-dist-Metric-Space : UU l2
  bounded-dist-Metric-Space =
    type-Prop bounded-dist-prop-Metric-Space

  is-prop-bounded-dist-Metric-Space :
    is-prop bounded-dist-Metric-Space
  is-prop-bounded-dist-Metric-Space =
    is-prop-type-Prop bounded-dist-prop-Metric-Space

Elements at bounded distance relative to a given element in metric spaces

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  (x : type-Metric-Space A)
  where

  element-at-bounded-dist-Metric-Space : UU (l1  l2)
  element-at-bounded-dist-Metric-Space =
    type-subtype (bounded-dist-prop-Metric-Space A x)

  value-element-at-bounded-dist-Metric-Space :
    element-at-bounded-dist-Metric-Space  type-Metric-Space A
  value-element-at-bounded-dist-Metric-Space = pr1

  bounded-dist-value-element-at-bounded-dist-Metric-Space :
    (H : element-at-bounded-dist-Metric-Space) 
    bounded-dist-Metric-Space
      ( A)
      ( x)
      ( value-element-at-bounded-dist-Metric-Space H)
  bounded-dist-value-element-at-bounded-dist-Metric-Space = pr2

Properties

Being at bounded distance in a metric space is reflexive

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  where

  refl-bounded-dist-Metric-Space :
    (x : type-Metric-Space A)  bounded-dist-Metric-Space A x x
  refl-bounded-dist-Metric-Space x =
    map-trunc-Prop
      ( λ d  d , refl-structure-Metric-Space A d x)
      ( is-inhabited-ℚ⁺)

Being at bounded distance in a metric space is symmetric

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  where

  symmetric-bounded-dist-Metric-Space :
    (x y : type-Metric-Space A) 
    bounded-dist-Metric-Space A x y 
    bounded-dist-Metric-Space A y x
  symmetric-bounded-dist-Metric-Space x y =
    map-tot-exists
      ( λ d  is-symmetric-structure-Metric-Space A d x y)

Being at bounded distance in a metric space is transitive

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  where

  transitive-bounded-dist-Metric :
    (x y z : type-Metric-Space A) 
    bounded-dist-Metric-Space A y z 
    bounded-dist-Metric-Space A x y 
    bounded-dist-Metric-Space A x z
  transitive-bounded-dist-Metric x y z =
    map-binary-exists
      ( is-upper-bound-dist-Metric-Space A x z)
      ( λ dyz dxy  dxy +ℚ⁺ dyz)
      ( λ dyz dxy  is-triangular-structure-Metric-Space A x y z dxy dyz)

The preorder of elements at bounded distance in a metric space

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  where

  preorder-bounded-dist-Metric-Space : Preorder l1 l2
  preorder-bounded-dist-Metric-Space =
    ( type-Metric-Space A) ,
    ( bounded-dist-prop-Metric-Space A) ,
    ( refl-bounded-dist-Metric-Space A) ,
    ( transitive-bounded-dist-Metric A)

Being at bounded distance in a metric space is an equivalence relation

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  where

  is-equivalence-relation-bounded-dist-Metric-Space :
    is-equivalence-relation (bounded-dist-prop-Metric-Space A)
  is-equivalence-relation-bounded-dist-Metric-Space =
    ( refl-bounded-dist-Metric-Space A) ,
    ( symmetric-bounded-dist-Metric-Space A) ,
    ( transitive-bounded-dist-Metric A)

  equivalence-relation-bounded-dist-Metric-Space :
    equivalence-relation l2 (type-Metric-Space A)
  equivalence-relation-bounded-dist-Metric-Space =
    ( bounded-dist-prop-Metric-Space A) ,
    ( refl-bounded-dist-Metric-Space A) ,
    ( symmetric-bounded-dist-Metric-Space A) ,
    ( transitive-bounded-dist-Metric A)

Recent changes