Strict inequality of nonnegative real numbers
Content created by Louis Wasserman.
Created on 2025-10-22.
Last modified on 2025-11-09.
{-# OPTIONS --lossy-unification #-} module real-numbers.strict-inequality-nonnegative-real-numbers where
Imports
open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.strict-inequality-nonnegative-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.universe-levels open import logic.functoriality-existential-quantification open import real-numbers.inequality-nonnegative-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-nonnegative-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
The standard strict ordering¶ on the nonnegative real numbers is inherited from the standard strict ordering on real numbers.
Definition
le-prop-ℝ⁰⁺ : {l1 l2 : Level} → ℝ⁰⁺ l1 → ℝ⁰⁺ l2 → Prop (l1 ⊔ l2) le-prop-ℝ⁰⁺ x y = le-prop-ℝ (real-ℝ⁰⁺ x) (real-ℝ⁰⁺ y) le-ℝ⁰⁺ : {l1 l2 : Level} → ℝ⁰⁺ l1 → ℝ⁰⁺ l2 → UU (l1 ⊔ l2) le-ℝ⁰⁺ x y = type-Prop (le-prop-ℝ⁰⁺ x y) is-prop-le-ℝ⁰⁺ : {l1 l2 : Level} (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2) → is-prop (le-ℝ⁰⁺ x y) is-prop-le-ℝ⁰⁺ x y = is-prop-type-Prop (le-prop-ℝ⁰⁺ x y)
Properties
The canonical embedding of nonnegative rational numbers to nonnegative reals preserves strict inequality
abstract preserves-le-nonnegative-real-ℚ⁰⁺ : (p q : ℚ⁰⁺) → le-ℚ⁰⁺ p q → le-ℝ⁰⁺ (nonnegative-real-ℚ⁰⁺ p) (nonnegative-real-ℚ⁰⁺ q) preserves-le-nonnegative-real-ℚ⁰⁺ p q = preserves-le-real-ℚ
Similarity preserves strict inequality
module _ {l1 l2 l3 : Level} (z : ℝ⁰⁺ l1) (x : ℝ⁰⁺ l2) (y : ℝ⁰⁺ l3) (x~y : sim-ℝ⁰⁺ x y) where abstract preserves-le-left-sim-ℝ⁰⁺ : le-ℝ⁰⁺ x z → le-ℝ⁰⁺ y z preserves-le-left-sim-ℝ⁰⁺ = preserves-le-left-sim-ℝ (real-ℝ⁰⁺ z) _ _ x~y
Concatenation of inequality and strict inequality
module _ {l1 l2 l3 : Level} (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2) (z : ℝ⁰⁺ l3) where abstract concatenate-leq-le-ℝ⁰⁺ : leq-ℝ⁰⁺ x y → le-ℝ⁰⁺ y z → le-ℝ⁰⁺ x z concatenate-leq-le-ℝ⁰⁺ = concatenate-leq-le-ℝ (real-ℝ⁰⁺ x) (real-ℝ⁰⁺ y) (real-ℝ⁰⁺ z)
Every nonnegative real number is less than some positive rational number
module _ {l : Level} (x : ℝ⁰⁺ l) where abstract le-some-positive-rational-ℝ⁰⁺ : exists ℚ⁺ (λ q → le-prop-ℝ⁰⁺ x (nonnegative-real-ℚ⁺ q)) le-some-positive-rational-ℝ⁰⁺ = map-tot-exists ( λ (q , _) x<q → le-real-is-in-upper-cut-ℚ (real-ℝ⁰⁺ x) x<q) ( exists-ℚ⁺-in-upper-cut-ℝ⁰⁺ x)
If x is less than the same positive rational numbers y is less than, then x and y are similar
module _ {l1 l2 : Level} (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2) where abstract sim-le-same-positive-rational-ℝ⁰⁺ : ( (q : ℚ⁺) → le-ℝ (real-ℝ⁰⁺ x) (real-ℚ⁺ q) ↔ le-ℝ (real-ℝ⁰⁺ y) (real-ℚ⁺ q)) → sim-ℝ⁰⁺ x y sim-le-same-positive-rational-ℝ⁰⁺ H = sim-sim-leq-ℝ ( leq-le-positive-rational-ℝ⁰⁺ x y (backward-implication ∘ H) , leq-le-positive-rational-ℝ⁰⁺ y x (forward-implication ∘ H))
Recent changes
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).
- 2025-10-22. Louis Wasserman. The absolute value distributes over multiplication in the reals (#1616).