Descent data for families of equivalence types over the circle
Content created by Egbert Rijke, Fredrik Bakke and Vojtěch Štěpančík.
Created on 2023-08-28.
Last modified on 2024-04-25.
module synthetic-homotopy-theory.descent-circle-equivalence-types where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-dependent-pair-types open import foundation.universe-levels open import synthetic-homotopy-theory.dependent-descent-circle open import synthetic-homotopy-theory.descent-circle open import synthetic-homotopy-theory.descent-circle-dependent-pair-types open import synthetic-homotopy-theory.descent-circle-function-types open import synthetic-homotopy-theory.descent-circle-subtypes open import synthetic-homotopy-theory.free-loops open import synthetic-homotopy-theory.morphisms-descent-data-circle open import synthetic-homotopy-theory.sections-descent-circle open import synthetic-homotopy-theory.universal-property-circle
Idea
Given two families A, B : 𝕊¹ → U
over the
circle, to show that they are
equivalent is the same as showing that their
descent data is equivalent.
Definitions
Dependent descent data for being an equivalence of families over the circle
module _ { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S) ( A : family-with-descent-data-circle l l2) ( B : family-with-descent-data-circle l l3) where family-dependent-descent-data-circle-is-equiv : ( t : S) → family-descent-data-circle-function-type l A B t → UU (l2 ⊔ l3) family-dependent-descent-data-circle-is-equiv t = is-equiv dependent-descent-data-circle-is-equiv : dependent-descent-data-circle ( l2 ⊔ l3) ( descent-data-circle-function-type l A B) pr1 dependent-descent-data-circle-is-equiv = is-equiv pr2 dependent-descent-data-circle-is-equiv f = equiv-is-equiv-left-factor ( aut-family-with-descent-data-circle B) ∘e ( equiv-is-equiv-right-factor ( inv-equiv (aut-family-with-descent-data-circle A)))
Properties
Characterization of dependent descent data for being an equivalence of families over the circle
module _ { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S) ( A : family-with-descent-data-circle l l2) ( B : family-with-descent-data-circle l l3) where eq-dependent-descent-data-circle-is-equiv : equiv-dependent-descent-data-circle ( descent-data-circle-function-type l A B) ( dependent-descent-data-circle-is-equiv l A B) ( dependent-descent-data-double-family-circle l ( family-with-descent-data-circle-function-type l A B) ( family-dependent-descent-data-circle-is-equiv l A B)) pr1 eq-dependent-descent-data-circle-is-equiv f = equiv-is-equiv-left-factor ( equiv-family-with-descent-data-circle B) ∘e ( equiv-is-equiv-right-factor ( inv-equiv (equiv-family-with-descent-data-circle A))) pr2 eq-dependent-descent-data-circle-is-equiv f p = center (is-property-is-equiv _ _ _) family-with-dependent-descent-data-circle-is-equiv : double-family-with-dependent-descent-data-circle l ( family-with-descent-data-circle-function-type l A B) ( l2 ⊔ l3) pr1 family-with-dependent-descent-data-circle-is-equiv = family-dependent-descent-data-circle-is-equiv l A B pr1 (pr2 family-with-dependent-descent-data-circle-is-equiv) = dependent-descent-data-circle-is-equiv l A B pr2 (pr2 family-with-dependent-descent-data-circle-is-equiv) = eq-dependent-descent-data-circle-is-equiv
Characterization of descent data for families of equivalence types over the circle
module _ { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S) ( A : family-with-descent-data-circle l l2) ( B : family-with-descent-data-circle l l3) where family-with-descent-data-circle-equivalence-type : family-with-descent-data-circle l (l2 ⊔ l3) family-with-descent-data-circle-equivalence-type = family-with-descent-data-circle-dependent-pair-type l ( family-with-descent-data-circle-function-type l A B) ( family-with-dependent-descent-data-circle-is-equiv l A B)
A family of equivalences between families over the circle is given by an equivalence of the corresponding descent data
module _ { l1 l2 l3 : Level} {S : UU l1} (l : free-loop S) ( A : family-with-descent-data-circle l l2) ( B : family-with-descent-data-circle l l3) where equiv-section-descent-data-circle-equiv-equiv-descent-data-circle : dependent-universal-property-circle l → ( ( t : S) → ( family-family-with-descent-data-circle A t) ≃ ( family-family-with-descent-data-circle B t)) ≃ ( equiv-descent-data-circle ( descent-data-family-with-descent-data-circle A) ( descent-data-family-with-descent-data-circle B)) equiv-section-descent-data-circle-equiv-equiv-descent-data-circle dup-circle = equivalence-reasoning ( ( t : S) → family-family-with-descent-data-circle A t ≃ family-family-with-descent-data-circle B t) ≃ Σ ( fixpoint-descent-data-circle ( descent-data-circle-function-type l A B)) ( λ x → is-equiv (pr1 x)) by equiv-section-descent-data-circle-subtype-fixpoint-in-subtype l ( family-with-descent-data-circle-function-type l A B) ( family-with-dependent-descent-data-circle-is-equiv l A B) ( λ t f → is-property-is-equiv f) ( dup-circle) ≃ Σ ( hom-descent-data-circle ( descent-data-family-with-descent-data-circle A) ( descent-data-family-with-descent-data-circle B)) ( λ h → is-equiv ( map-hom-descent-data-circle ( descent-data-family-with-descent-data-circle A) ( descent-data-family-with-descent-data-circle B) ( h))) by equiv-Σ-equiv-base ( λ h → is-equiv ( map-hom-descent-data-circle ( descent-data-family-with-descent-data-circle A) ( descent-data-family-with-descent-data-circle B) ( h))) ( equiv-fixpoint-descent-data-circle-function-type-hom l A B) ≃ equiv-descent-data-circle ( descent-data-family-with-descent-data-circle A) ( descent-data-family-with-descent-data-circle B) by compute-equiv-descent-data-circle ( descent-data-family-with-descent-data-circle A) ( descent-data-family-with-descent-data-circle B)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Universal properties of colimits quantify over all universe levels (#1126).
- 2023-10-08. Egbert Rijke and Fredrik Bakke. Refactoring types with automorphisms/endomorphisms and descent data for the circle (#812).
- 2023-08-28. Vojtěch Štěpančík. Extending infrastructure for working with descent data for the circle (#709).